Induction of nonselective permeability of the inner membrane in deenergized mitochondria.

نویسندگان

  • V N Dedov
  • O V Demin
  • V Y Chernyak
  • B V Chernyak
چکیده

Induction of the nonselective cyclosporin-sensitive pore in the inner mitochondrial membrane under conditions of complete dissipation of ion gradients and transmembrane potential was studied. This approach allows the kinetics of Ca2+-dependent pore opening and the preceding processes of induction to be studied separately. The effects of mitochondrial heterogeneity were also minimized. We found that the kinetics of pore opening can be described by a minimal two-step scheme where only the rate constant at the first step depends on Ca2+ concentration. Oxidation of pyridine nucleotides in the matrix caused a slow transition in the pore complex and decreased the apparent dissociation constant of the Ca2+-binding site from >1 mM to approximately 30 microM. N-Ethylmaleimide (but not disulfide-reducing agents) prevented and slowly reverted the pore induction process. Data suggesting allosteric modulation of the pore by pyridine nucleotides are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depletion of Mg2+ and permeability increase of the mitochondrial inner membrane by primycin.

Recently we have shown1) that primycin below 2 3 nmoles/mg protein concentration ("low dose") renders their inner membrane permeable to K+, Na+ and Tris+ but not to Tea+. This effect was seen only under energized conditions. It has been concluded that this effect of the antibiotic is due to its ionophore-like action. This conclusion has been supported by the experiments of BLASKO el al.2) made ...

متن کامل

Reactive Oxygen Species (ROS)-induced ROS Release: A New Phenomenon Accompanying Induction of the Mitochondrial Permeability Transition in Cardiac Myocytes

We sought to understand the relationship between reactive oxygen species (ROS) and the mitochondrial permeability transition (MPT) in cardiac myocytes based on the observation of increased ROS production at sites of spontaneously deenergized mitochondria. We devised a new model enabling incremental ROS accumulation in individual mitochondria in isolated cardiac myocytes via photoactivation of t...

متن کامل

Reactive Oxygen Species (Ros-Induced) Ros Release

We sought to understand the relationship between reactive oxygen species (ROS) and the mitochondrial permeability transition (MPT) in cardiac myocytes based on the observation of increased ROS production at sites of spontaneously deenergized mitochondria. We devised a new model enabling incremental ROS accumulation in individual mitochondria in isolated cardiac myocytes via photoactivation of t...

متن کامل

Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress.

The effects of tetrandrine (6,6', 7,12-tetramethoxy-2, 2'-dimethyl-berbaman) on the mitochondrial function were assessed on oxidative stress, mitochondrial permeability transition (MPT), and bioenergetics of rat liver mitochondria. At concentrations lower than 100 nmol/mg protein, tetrandrine decreased the hydrogen peroxide formation, the extent of lipid peroxidation, the susceptibility to Ca(2...

متن کامل

Evidences for a new cation channel in the brain mitochondrial inner membrane

Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry. Biokhimiia

دوره 64 7  شماره 

صفحات  -

تاریخ انتشار 1999