CYP2J2 and Its Metabolites EETs Attenuate Insulin Resistance via Regulating Macrophage Polarization in Adipose Tissue

نویسندگان

  • Meiyan Dai
  • Lujin Wu
  • Peihua Wang
  • Zheng Wen
  • Xizhen Xu
  • Dao Wen Wang
چکیده

Macrophages in adipose tissue are associated with obesity-induced low-grade inflammation, which contributed to insulin resistance and the related metabolic diseases. Previous studies demonstrated the beneficial effects of epoxyeicosatrienoic acids (EETs) on metabolic disorders and inflammation. Here we investigated the effects of CYP2J2-EETs-sEH metabolic pathway on insulin resistance in mice and the potential mechanisms. High fat diet (HFD)-induced obesity caused metabolic dysfunction with more weight gain, elevated glucose and lipids levels, impaired glucose tolerance and insulin sensitivity, while increase in EETs level by rAAV-mediated CYP2J2 overexpression, administration of sEH inhibit TUPS or EETs infusion significantly attenuated these metabolic disorders. EETs inhibited macrophages recruitment to adipose tissue and their switch to classically activated macrophage (M1) phenotype, while preserved the alternatively activated macrophage (M2) phenotype, which was accompanied by substantially reduced adipose tissue and systemic inflammation and insulin resistance. In vitro studies further clarified the effects of EETs on macrophage infiltration and polarization, and microarray assays showed that cAMP-EPAC signaling pathway was involved in these processes. Collectively, these results described key beneficial immune-regulatory properties and metabolic regulation of CYP2J2-EETs-sEH metabolic pathway, and indicated therapeutic potential of EETs in obesity-induced insulin resistance and related inflammatory diseases through modulating macrophage polarization targeting cAMP-EPAC signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYP2J2 attenuates metabolic dysfunction in diabetic mice by reducing hepatic inflammation via the PPARγ.

Epoxyeicosatrienoic acids (EETs) and arachidonic acid-derived cytochrome P450 (CYP) epoxygenase metabolites have diverse biological effects, including anti-inflammatory properties in the vasculature. Increasing evidence suggests that inflammation in type 2 diabetes is a key component in the development of insulin resistance. In this study, we investigated whether CYP epoxygenase expression and ...

متن کامل

CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1

Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5'-AMP-activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP...

متن کامل

Overexpressing STAMP2 Improves Insulin Resistance in Diabetic ApoE−/−/LDLR−/− Mice via Macrophage Polarization Shift in Adipose Tissues

STAMP2 is a counterregulator of inflammation and insulin resistance. The aim of this study is to investigate whether activation of STAMP2 improves insulin resistance by regulating macrophage polarization in adipose tissues. The diabetic ApoE⁻/⁻/LDLR⁻/⁻ mouse model was induced by high-fat diet and low-dose streptozotocin. Samples were obtained from epididymal, subcutaneous and brown adipose tiss...

متن کامل

miR-223 in Obesity-Associated Adipose Tissue Inflammation

Background—Macrophage activation plays a crucial role in regulating adipose tissue inflammation and is a major contributor to the pathogenesis of obesity-associated cardiovascular diseases. On various types of stimuli, macrophages respond with either classic (M1) or alternative (M2) activation. M1and M2-mediated signaling pathways and corresponding cytokine production profiles are not completel...

متن کامل

A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation.

BACKGROUND Macrophage activation plays a crucial role in regulating adipose tissue inflammation and is a major contributor to the pathogenesis of obesity-associated cardiovascular diseases. On various types of stimuli, macrophages respond with either classic (M1) or alternative (M2) activation. M1- and M2-mediated signaling pathways and corresponding cytokine production profiles are not complet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017