Polyploidization-induced genome variation in triticale.
نویسندگان
چکیده
Polyploidization-induced genome variation in triticale (x Triticosecale Wittmack) was investigated using both AFLP and RFLP analyses. The AFLP analyses were implemented with both EcoRI-MseI (E-M) and PstI-MseI (P-M) primer combinations, which, because of their relative differences in sensitivity to cytosine methylation, primarily amplify repetitive and low-copy sequences, respectively. The results showed that the genomic sequences in triticale involved a great degree of variation including both repetitive and low-copy sequences. The frequency of losing parental bands was much higher than the frequency of gaining novel bands, suggesting that sequence elimination might be a major force causing genome variation in triticale. In all cases, variation in E-M primer-amplified parental bands was more frequent in triticale than that using P-M primers, suggesting that repetitive sequences were more involved in variation than low-copy sequences. The data also showed that the wheat (Triticum spp.) genomes were relatively highly conserved in triticales, especially in octoploid triticales, whereas the rye (Secale cereale L.) genome consistently demonstrated a very high level of genomic sequence variation (68%-72%) regardless of the triticale ploidy levels or primers used. In addition, when a parental AFLP band was present in both wheat and rye, the tendency of the AFLP band to be present in triticale was much higher than when it was present in only one of the progenitors. Furthermore, the cDNA-probed RFLP analyses showed that over 97% of the wheat coding sequences were maintained in triticale, whereas only about 61.6% of the rye coding sequences were maintained, suggesting that the rye genome variation in triticale also involved a high degree of rye coding sequence changes. The data also suggested that concerted evolution might occur in the genomic sequences of triticale. In addition, the observed genome variation in wheat-rye addition lines was similar to that in triticale, suggesting that wheat-rye addition lines can be used to thoroughly study the genome evolution of polyploid triticale.
منابع مشابه
Polyploidization as a Retraction Force in Plant Genome Evolution: Sequence Rearrangements in Triticale
BACKGROUND Polyploidization is a major evolutionary process in plants where hybridization and chromosome doubling induce enormous genomic stress and can generate genetic and epigenetic modifications. However, proper evaluation of DNA sequence restructuring events and the precise characterization of sequences involved are still sparse. METHODOLOGY/PRINCIPAL FINDINGS Inter Retrotransposons Ampl...
متن کاملSize matters in Triticeae polyploids: larger genomes have higher remodeling.
Polyploidization is one of the major driving forces in plant evolution and is extremely relevant to speciation and diversity creation. Polyploidization leads to a myriad of genetic and epigenetic alterations that ultimately generate plants and species with increased genome plasticity. Polyploids are the result of the fusion of two or more genomes into the same nucleus and can be classified as a...
متن کاملTiming and rate of genome variation in triticale following allopolyploidization.
The timing and rate of genomic variation induced by allopolyploidization in the intergeneric wheat-rye (Triticum spp. - Secale cereale L.) hybrid triticale (x Triticosecale Wittmack) was studied using amplified fragment length polymorphism (AFLP) analyses with 2 sets of primers, EcoRI-MseI (E-M) and PstI-MseI (P-M), which primarily amplify repetitive and low-copy sequences, respectively. The re...
متن کاملInvolvement of Disperse Repetitive Sequences in Wheat/Rye Genome Adjustment
The union of different genomes in the same nucleus frequently results in hybrid genotypes with improved genome plasticity related to both genome remodeling events and changes in gene expression. Most modern cereal crops are polyploid species. Triticale, synthesized by the cross between wheat and rye, constitutes an excellent model to study polyploidization functional implications. We intend to ...
متن کاملAllopolyploidization-accommodated genomic sequence changes in triticale.
BACKGROUND Allopolyploidization is one of the major evolutionary modes of plant speciation. Recent interest in studying allopolyploids has provided significant novel insights into the mechanisms of allopolyploid formation. Compelling evidence indicates that genetic and/or epigenetic changes have played significant roles in shaping allopolyploids, but rates and modes of the changes can be very d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome
دوره 47 5 شماره
صفحات -
تاریخ انتشار 2004