Oxidation of L-tryptophan in biology: a comparison between tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase.
نویسندگان
چکیده
The family of haem dioxygenases catalyse the initial oxidative cleavage of L-tryptophan to N-formylkynurenine, which is the first, rate-limiting, step in the L-kynurenine pathway. In the present paper, we discuss and compare structure and function across the family of haem dioxygenases by focusing on TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase), including a review of recent structural information for both enzymes. The present paper describes how the recent development of recombinant expression systems has informed our more detailed understanding of the substrate binding, catalytic activity and mechanistic properties of these haem dioxygenases.
منابع مشابه
Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملSubstrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM.
The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygena...
متن کاملExploring the mechanism of tryptophan 2,3-dioxygenase
The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes...
متن کاملTryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase.
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase was characterized, taking advantage of its induction by bacterial lipopolysaccharide. Our results demonstrated that in various tissues, N-formylkynurenine produced by the dioxygenase from tryptophan was rapidly hydrolyzed into kynurenine by a kynurenine formamidase, but it was not further metabolized. The localization in th...
متن کاملP 78: The Role of Kynurenine Pathway in Suicidal Behavior and Depression
According to global statistics, over 80,000 deaths occur by suicide annually. Up to 90% of complete suicides are based on psychiatric disorders specifically major depressive disorder (MDD) and bipolar disorder. Furthermore high levels of inflammation have been indicated in suicidal patients in both central nervous system and the peripheral blood. Two biological mechanisms that play a key role i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 37 Pt 2 شماره
صفحات -
تاریخ انتشار 2009