Subject-level differences in reported locations of cutaneous tactile and nociceptive stimuli
نویسندگان
چکیده
Recent theoretical advances on the topic of body representations have raised the question whether spatial perception of touch and nociception involve the same representations. Various authors have established that subjective localizations of touch and nociception are displaced in a systematic manner. The relation between veridical stimulus locations and localizations can be described in the form of a perceptual map; these maps differ between subjects. Recently, evidence was found for a common set of body representations to underlie spatial perception of touch and slow and fast pain, which receive information from modality specific primary representations. There are neurophysiological clues that the various cutaneous senses may not share the same primary representation. If this is the case, then differences in primary representations between touch and nociception may cause subject-dependent differences in perceptual maps of these modalities. We studied localization of tactile and nociceptive sensations on the forearm using electrocutaneous stimulation. The perceptual maps of these modalities differed at the group level. When assessed for individual subjects, the differences localization varied in nature between subjects. The agreement of perceptual maps of the two modalities was moderate. These findings are consistent with a common internal body representation underlying spatial perception of touch and nociception. The subject level differences suggest that in addition to these representations other aspects, possibly differences in primary representation and/or the influence of stimulus parameters, lead to differences in perceptual maps in individuals.
منابع مشابه
Parietal cortex involvement in the localization of tactile and noxious mechanical stimuli: a transcranial magnetic stimulation study.
The cortical system underlying perceptual ability to localize tactile and noxious cutaneous stimuli in humans is still incompletely understood. We used transcranial magnetic stimulation (TMS) to transiently interfere with the function of the parietal cortex, at different times after the beginning of noxious or non-noxious mechanical stimulation of the hairy skin overlying the dorsal surface of ...
متن کاملSubjective Localization of Electrocutaneous Stimuli
Studying the perception of spatiotemporal stimulus patterns in various modalities may yield important information on the way in which humans process sensory information. The perception of tactile and nociceptive cutaneous stimulus patterns have been studied by Stolle et al. [1] and Trojan et al. [2][4] respectively. Among other things, both authors studied subjective localization of single stim...
متن کاملPosterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat.
This study investigated the responses of posterior triangular (PoT) thalamic neurons to tactile and noxious calibrated stimuli in anesthetized rats. We report here that 41% of PoT units responded to cutaneous stimulation, in most cases, by increasing strongly their firing. Forty-five percent of the responding units were nociceptive specific (NS), 19% were nociceptive nonspecific (NNS), and 36% ...
متن کاملPotential role of medullary raphe-spinal neurons in cutaneous vasoconstriction: an in vivo electrophysiological study.
In rabbits, raphe magnus/pallidus neurons form a link in the CNS pathway regulating changes in cutaneous blood flow elicited by nociceptive stimulation and activation of the central nucleus of the amygdala. To characterize relevant raphe-spinal neurons, we performed extracellular recordings from the rostral medullary raphe nuclei in anesthetized, paralyzed, mechanically ventilated rabbits. All ...
متن کاملPain facilitates tactile processing in human somatosensory cortices.
Touch and pain are intimately related modalities. Despite a substantial overlap in their cortical representations interactions between both modalities are largely unknown at the cortical level. We therefore used magnetoencephalography and selective nociceptive cutaneous laser stimulation to investigate the effects of brief painful stimuli on cortical processing of touch. Using a conditioning te...
متن کامل