An Incremental Carrier-Grade NAT (CGN) for IPv6 Transition

نویسندگان

  • Sheng Jiang
  • Dayong Guo
  • Brian E. Carpenter
چکیده

Global IPv6 deployment was slower than originally expected. As IPv4 address exhaustion approaches, IPv4 to IPv6 transition issues become more critical and less tractable. Host-based transition mechanisms used in dual-stack environments cannot meet all transition requirements. Most end users are not sufficiently expert to configure or maintain host-based transition mechanisms. CarrierGrade NAT (CGN) devices with integrated transition mechanisms can reduce the operational changes required during the IPv4 to IPv6 migration or coexistence period. This document proposes an incremental CGN approach for IPv6 transition. It can provide IPv6 access services for IPv6 hosts and IPv4 access services for IPv4 hosts while leaving much of a legacy ISP network unchanged during the initial stage of IPv4 to IPv6 migration. Unlike CGN alone, incremental CGN also supports and encourages smooth transition towards dual-stack or IPv6-only ISP networks. An integrated configurable CGN device and an adaptive home gateway (HG) device are described. Both are reusable during different transition phases, avoiding multiple upgrades. This enables IPv6 migration to be incrementally achieved according to real user requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RFC 6264 Incremental CGN for IPv 6 Transition

Global IPv6 deployment was slower than originally expected. As IPv4 address exhaustion approaches, IPv4 to IPv6 transition issues become more critical and less tractable. Host-based transition mechanisms used in dual-stack environments cannot meet all transition requirements. Most end users are not sufficiently expert to configure or maintain host-based transition mechanisms. CarrierGrade NAT (...

متن کامل

Carrier-Grade NAT (CGN) Deployment with BGP/MPLS IP VPNs

This document specifies a framework to integrate a Network Address Translation (NAT) layer into an operator’s network to function as a Carrier-Grade NAT (also known as CGN or Large-Scale NAT). The CGN infrastructure will often form a NAT444 environment as the subscriber home network will likely also maintain a subscriber-side NAT function. Exhaustion of the IPv4 address pool is a major driver c...

متن کامل

Comparison Between IPv4 to IPv6 Transition Techniques

The IPv4 addresses exhaustion demands a protocol transition from IPv4 to IPv6. The original transition technique, the dual stack, is not widely deployed yet and it demanded the creation of new transition techniques to extend the transition period. This work makes an experimental comparison of techniques that use dual stack with a limited IPv4 address. This limited address might be a RFC 1918 ad...

متن کامل

Inferring Carrier-Grade NAT Deployment in the Wild

Given the increasing scarcity of IPv4 addresses, network operators are resorting to measures to expand their address pool or prolong the life of existing addresses. One such approach is Carrier-Grade NAT (CGN), where many end-users in a network share a single public IPv4 address. There is limited data about the prevalence of CGN, despite the implications on performance, security, and ultimately...

متن کامل

A Better Approach than Carrier-Grade-NAT

We are facing the exhaustion of newly assignable IPv4 addresses. Unfortunately, IPv6 is not yet deployed widely enough to fully replace IPv4, and it is unrealistic to expect that this is going to change before we run out of IPv4 addresses. Letting hosts seamlessly communicate in an IPv4world without assigning a unique globally routable IPv4 address to each of them is a challenging problem, for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RFC

دوره 6264  شماره 

صفحات  -

تاریخ انتشار 2011