Adapted MRF Segmentation of Multiple Sclerosis Lesions Using Local Contextual Information

نویسندگان

  • Nagesh K. Subbanna
  • Simon J. Francis
  • Doina Precup
  • D. Louis Collins
  • Douglas L. Arnold
  • Tal Arbel
چکیده

We present a fully automated technique to segment lesions from multimodal brain MRIs of patients with Multiple Sclerosis. We describe an adapted Markov Random Field that uses intensity at every voxel, its neighbourhood intensity difference information and neighbouring voxel class information to infer voxel labels at every voxel. We test our technique on 25 real, clinical MS volumes evaluated by five experts. Our method outperforms two state of the art methods: one an outlier based MRF technique and the other a hybrid Bayesian-MRF technique both qualitatively and according to the Dice similarity coefficients and the number of present negative lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI

In this paper, we present IMaGe, a new, iterative two-stage probabilistic graphical model for detection and segmentation of Multiple Sclerosis (MS) lesions. Our model includes two levels of Markov Random Fields (MRFs). At the bottom level, a regular grid voxel-based MRF identifies potential lesion voxels, as well as other tissue classes, using local and neighbourhood intensities and class prior...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Multiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)

Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...

متن کامل

Hierarchical Mrf and Random Forest Segmentation of Ms Lesions and Healthy Tissues in Brain Mri

In this paper, we present an automatic hierarchical framework for the segmentation of a variety healthy tissues and lesions in brain MRI of patients with Multiple Sclerosis (MS). At the voxel level, lesion and tissue labels are estimated through a Markov Random Field (MRF) segmentation framework that leverages spatial prior probabilities for 9 healthy tissues through multi-atlas fusion (MALF). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011