Lohit: an Online Detection & Control System for Cellular Sms Spam
نویسندگان
چکیده
The efficient and accurate control of spams on mobile handsets is an important problem. Mobile spam incurs a cost on a per-message basis, degrades normal cellular service, and is a nuisance and breach of privacy. It is also a popular enabler of mobile fraud. In countries such as South Korea and Japan, Mobile Spamming generates almost half of the total SMS traffic. In this paper we propose a novel spam control technique based on random projections, designed to run on SS7 links so that spams are supressed before they reach users. Our is a non Bayesian, non–keyword approach, which rate limits candidate spam messages to foil spammers. We demonstrate using real-world spam messages that random projection is a robust, efficient and accurate method to identify SMS spam. We give a mathematical formulation of the SMS spam problem and demonstrate that it models the real world short message spam paradigm accurately. Based on this formulation, we describe a framework and algorithm to efficiently identify and control spam messages at the SMSC switch of a mobile network.
منابع مشابه
An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملGreystar: Fast and Accurate Detection of SMS Spam Numbers in Large Cellular Networks Using Gray Phone Space
In this paper, we present the design of Greystar, an innovative defense system for combating the growing SMS spam traffic in cellular networks. By exploiting the fact that most SMS spammers select targets randomly from the finite phone number space, Greystar monitors phone numbers from the grey phone space (which are associated with data only devices like laptop data cards and machine-to-machin...
متن کاملBotOnus: an online unsupervised method for Botnet detection
Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...
متن کاملCharacterizing SMS spam in a large cellular network via mining victim spam reports
In this paper 1 a study of SMS messages in a large US based cellular carrier utilizing both customer reported SMS spam and network Call Detail Records (CDRs) is conducted to develop a comprehensive understanding of SMS spam in order to develop strategies and approaches to detect and control SMS spam activity. The analysis provides insights into content classification of spam campaigns as well a...
متن کاملBehavior-Based Online Anomaly Detection for a Nationwide Short Message Service
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. Over time, users' interactions with the network provides a vast amount of usage data. Thes...
متن کامل