Potential of Rhodobacter capsulatus Grown in Anaerobic-Light or Aerobic-Dark Conditions as Bioremediation Agent for Biological Wastewater Treatments
نویسندگان
چکیده
The use of microorganisms to clean up wastewater provides a cheaper alternative to the conventional treatment plant. The efficiency of this method can be improved by the choice of microorganism with the potential of removing contaminants. One such group is photosynthetic bacteria. Rhodobacter capsulatus is a purple non-sulfur bacterium (PNSB) found to be capable of different metabolic activities depending on the environmental conditions. Cell growth in different media and conditions was tested, obtaining a concentration of about 108 CFU/mL under aerobic-dark and 109 CFU/mL under anaerobic-light conditions. The biomass was then used as a bioremediation agent for denitrification and nitrification of municipal wastewater to evaluate the potential to be employed as an additive in biological wastewater treatment. Inoculating a sample of mixed liquor withdrawn from the municipal wastewater treatment plant with R. capsulatus grown in aerobic-dark and anaerobic-light conditions caused a significant decrease of N-NO3 (>95%), N-NH3 (70%) and SCOD (soluble chemical oxygen demand) (>69%), independent of the growth conditions. A preliminary evaluation of costs indicated that R. capsulatus grown in aerobic-dark conditions could be more convenient for industrial application.
منابع مشابه
Transcriptomic analysis of aerobic respiratory and anaerobic photosynthetic states in Rhodobacter capsulatus and their modulation by global redox regulators RegA, FnrL and CrtJ
Anoxygenicphotosynthetic prokaryotes have simplified photosystems that represent ancient lineages that predate the more complex oxygen evolving photosystems present in cyanobacteria and chloroplasts. These organisms thrive under illuminated anaerobic photosynthetic conditions, but also have the ability to grow under dark aerobic respiratory conditions. This study provides a detailed snapshot of...
متن کاملAnalysis of the fnrL gene and its function in Rhodobacter capsulatus.
The fnr gene encodes a regulatory protein involved in the response to oxygen in a variety of bacterial genera. For example, it was previously shown that the anoxygenic, photosynthetic bacterium Rhodobacter sphaeroides requires the fnrL gene for growth under anaerobic, photosynthetic conditions. Additionally, the FnrL protein in R. sphaeroides is required for anaerobic growth in the dark with an...
متن کاملInactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus.
The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzym...
متن کاملBacteriocin from Purple Nonsulfur Phototrophic Bacteria, Rhodobacter capsulatus
To find whether productivity of bacteriocin is controlled between different species under unusual cultural conditions, we used Rhodobacter capsulatus ATCC 17016 as a producer and Rhodopseudomonas palustris ATCC 17003 as an indicator. Rhodobacter capsulatus was cultured under aerobic conditions in the dark in Lascelles medium containing 0.3% Triton X-100. As a result, bacteriocin productivity in...
متن کاملRhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism.
Diverse bacteria are known to oxidize millimolar concentrations of ferrous iron [Fe(II)] under anaerobic conditions, both phototrophically and chemotrophically. Yet whether they can do this under conditions that are relevant to natural systems is understood less well. In this study, we tested how light, Fe(II) speciation, pH, and salinity affected the rate of Fe(II) oxidation by Rhodobacter cap...
متن کامل