Trained Named Entity Recognition using Distributional Clusters

نویسنده

  • Dayne Freitag
چکیده

This work applies boosted wrapper induction (BWI), a machine learning algorithm for information extraction from semi-structured documents, to the problem of named entity recognition. The default feature set of BWI is augmented with features based on distributional term clusters induced from a large unlabeled text corpus. Using no traditional linguistic resources, such as syntactic tags or specialpurpose gazetteers, this approach yields results near the state of the art in the MUC 6 named entity domain. Supervised learning using features derived through unsupervised corpus analysis may be regarded as an alternative to bootstrapping methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

The Unreasonable Effectiveness of Word Representations for Twitter Named Entity Recognition

Named entity recognition (NER) systems trained on newswire perform very badly when tested on Twitter. Signals that were reliable in copy-edited text disappear almost entirely in Twitter’s informal chatter, requiring the construction of specialized models. Using wellunderstood techniques, we set out to improve Twitter NER performance when given a small set of annotated training tweets. To levera...

متن کامل

Russian Named Entities Recognition and Classification Using Distributed Word and Phrase Representations

The paper presents results on Russian named entities classification and equivalent named entities retrieval using word and phrase representations. It is shown that a word or an expression’s context vector is an efficient feature to be used for predicting the type of a named entity. Distributed word representations are now claimed (and on a reasonable basis) to be one of the most promising distr...

متن کامل

بهبود شناسایی موجودیت‌های نامدار فارسی با استفاده از کسره اضافه

Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004