RANKL Promotes Migration and Invasion of Hepatocellular Carcinoma Cells via NF-κB-Mediated Epithelial-Mesenchymal Transition
نویسندگان
چکیده
BACKGROUND Metastasis accounts for the most deaths in patients with hepatocellular carcinoma (HCC). Receptor activator of nuclear factor kappa B ligand (RANKL) is associated with cancer metastasis, while its role in HCC remains largely unknown. METHODS Immunohistochemistry was performed to determine the expression of RANK in HCC tissue (n = 398). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to examine the expression of RANK, E-cadherin, N-cadherin, vimentin, Snail, Slug, Twist and MMPs in HCC cells. Wound healing and Transwell assays were used to evaluate cell migration and invasion ability. RESULTS We found that expression of RANK, the receptor of RANKL, was significantly higher in HCC tumor tissues than in peritumor liver tissues (p<0.001). Constitutive expression of RANK was detected in HCC cell lines, which can be up-regulated when HCC cells were stimulated with RANKL. Notably, in vitro experiments showed that activation of RANKL-RANK axis significantly promoted migration and invasion ability of HCC cells. In addition, RANKL stimulation increased the expression levels of N-cadherin, Snail, and Twist, while decreased the expression of E-cadherin, with concomitant activation of NF-κB signaling pathway. Moreover, administration of the NF-κB inhibitor attenuated RANKL-induced migration, invasion and epithelial-mesenchymal transition of HCC cells. CONCLUSIONS RANKL could potentiate migration and invasion ability of RANK-positive HCC cells through NF-κB pathway-mediated epithelial-mesenchymal transition, which means that RANKL-RANK axis could be a potential target for HCC therapy.
منابع مشابه
Activation of NF-κB by the RANKL/RANK system up-regulates snail and twist expressions and induces epithelial-to-mesenchymal transition in mammary tumor cell lines
BACKGROUND Increased motility and invasiveness of cancer cells are reminiscent of the epithelial-mesenchymal transition (EMT), which occurs during cancer progression and metastasis. Recent studies have indicated the expression of receptor activator of nuclear factor-κB (RANK) in various solid tumors, including breast cancer. Although activation of the RANK ligand (RANKL)/RANK system promotes ce...
متن کاملOverexpression of Livin promotes migration and invasion of colorectal cancer cells by induction of epithelial-mesenchymal transition via NF-κB activation.
Livin is a novel member of the inhibitors of apoptosis protein family and has been implicated in the development and progression of colorectal cancer (CRC). However, the underlying mechanisms of Livin in CRC remain not fully understood. In this study, we investigated the effects of Livin expression on the proliferation and metastasis of CRC cells and also addressed its related molecular mechani...
متن کاملRMP promotes epithelial-mesenchymal transition through NF-κB/CSN2/Snail pathway in hepatocellular carcinoma
Epithelial-mesenchymal transition (EMT) is a significant risk factor for metastasis in hepatocellular carcinoma (HCC) patients and with poor prognosis. In this study, we demonstrate the key role of RPB5-mediating protein (RMP) in EMT of HCC cells and the mechanism by which RMP promote EMT. RMP increases migration, invasion, and the progress of EMT of HCC cells, which facilitates the accumulatio...
متن کاملApigenin inhibits NF-κB and Snail signaling, EMT and metastasis in human hepatocellular carcinoma
Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also s...
متن کاملInactivation of M2 AChR/NF-κB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC)
Non-neuronal cholinergic system is involved in lung physiology and lung cancer. However, the biochemical events downstream acetylcholine (ACh) receptor activation leading to carcinogenesis and tumor progression are not fully understood. Our previous work has shown that non-neuronal ACh acts as an autoparacrine growth factor to stimulate cell proliferation and promote epithelial-mesenchymal tran...
متن کامل