Highly electrostatically-induced detection selectivity and sensitivity for a colloidal biosensor made of chitosan nanoparticle decorated with a few bare-surfaced gold nanorods.

نویسندگان

  • Ren-Der Jean
  • Wei-Da Cheng
  • Meng-Hsuan Hsiao
  • Fu-Hsuan Chou
  • Jong-Shing Bow
  • Dean-Mo Liu
چکیده

Metallic nanoparticles have been utilized as an analytical tool to detecting a wide variety of organic analytes. Among them, gold nanoparticles demonstrating outstanding surface plasmonic resonance property have been well recognized and received wide attention for plasmon-based sensing applications. However, in literature, gold-based nanosensor has to be integrated with specific "ligand" molecule in order to gain molecular recognition ability. However, "ligand" molecules, included proteins, peptides, nucleic acids, etc. are expensive and vulnerable to environmental change, in the meantime, anchoring procedure of the "ligand" molecules to gold surface may be cost-ineffective and endangered to the ligand's activity, making a final analytic probe less reliable and risk in production capability. Here, we develop a new approach by designing a colloid-type sensor using a few "bare" Au nanorods deposited on the surface of a colloidal chitosan carrier. By tuning the solution pH, the resulting colloidal nanoprobe is capable of detecting proteins, i.e., human serum albumin and lysozyme, with high specificity and sensitivity. This new approach allows a new type of the molecular probes to be well manipulated to monitor important biomolecules for medical detection, diagnosis, and bioengineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous

In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr) nanocomposite-modified screen-printed carbon electrode (SPCE) for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor ...

متن کامل

DNA Biosensor for Determination of 5-Fluorouracil based on Gold Electrode Modified with Au and Polyaniline Nanoparticles and FFT Square Wave Voltammetry

In the present study, a new biosensor for 5-Fluorouracil was described using modified goldelectrode and Fast Fourier transform square wave voltammetry (FFT SWV). Calf thymus DNAimmobilization was on a gold electrode decorated with polyaniline and gold nanoparticles. Theelectrochemical characteristics of the electrodes were investigated by cyclic voltammetry, andelectroch...

متن کامل

A colorimetric aptasensor for selective detection of oxytetracycline in milk, using gold nanoparticles and oxytetracline-short aptamer

Objective (s): In light of misuse of antibiotics in animal husbandry and their side effects on human health, there is an argent need to develop simple and rapid methods for determining the quantification of antibiotics in biological systems. Materials and Methods: In this work a facile and ultrasensitive colorimetric aptasensor was reported for detection of oxytetracycline (OTC) in water and mi...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014