SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation.

نویسندگان

  • D Rangasamy
  • K Woytek
  • S A Khan
  • V G Wilson
چکیده

The E1 protein is a multifunctional, origin-binding helicase that is essential for replication of papillomaviruses. Recently, bovine papillomavirus E1 was shown to be post-translationally modified by the addition of the SUMO-1 polypeptide. Here we show that the site of sumoylation maps to lysine residue 514. This lysine and the flanking sequences are well conserved in human papillomavirus (HPV) E1 proteins. Both HPV1a and HPV18 E1 proteins are substrates for sumoylation in vitro, which is consistent with this modification being a general property of E1 proteins. Mutations, which impair the sumoylation of bovine papillomavirus E1, prevent normal nuclear accumulation of E1 with a concomitant loss of replication capacity. These results suggest that sumoylation plays a role in nuclear transport and could regulate the E1 replication function by controlling access to the nuclear replication domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of papillomavirus E1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc9.

The E1 helicase from BPV and HPV16 interacts with Ubc9 to facilitate viral genome replication. We report that HPV11 E1 also interacts with Ubc9 in vitro and in the yeast two-hybrid system. Residues in E1 involved in oligomerization (353-435) were sufficient for binding to Ubc9 in vitro, but the origin-binding and ATPase domains were additionally required in yeast. Nuclear accumulation of BPV E1...

متن کامل

Transcriptional activation function is not required for stimulation of DNA replication by bovine papillomavirus type 1 E2.

Bovine papillomavirus type 1 replication was previously shown to require both the E1 initiator protein and the E2 transactivator protein. We show here that E1, in the absence of E2, is sufficient for low-level bovine papillomavirus type 1 DNA replication in C-33A cells. In addition, studies of genetically isolated E2 point mutants demonstrate that enhancement of replication by E2 does not requi...

متن کامل

Functional interaction between the bovine papillomavirus virus type 1 replicative helicase E1 and cyclin E-Cdk2.

We have found that the replicative helicase E1 of bovine papillomavirus type 1 (BPV-1) interacts with a key cell cycle regulator of S phase, the cyclin E-Cdk2 kinase. The E1 helicase, which interacts with cyclin E and not with Cdk2, presents the highest affinity for catalytically active kinase complexes. In addition, E1, cyclin E, and Cdk2 expressed in Xenopus egg extracts are quantitatively co...

متن کامل

Casein kinase II phosphorylates bovine papillomavirus type 1 E1 in vitro at a conserved motif.

The E1 protein of bovine papillomavirus type 1 (BPV-1) is a phosphoprotein which specifically binds and unwinds the virus replication origin by ATP-dependent helicase activity. The El protein has been shown to be multiply phosphorylated in vivo, although the sites of modification are incompletely mapped. Examination of the predicted amino acid sequence of all available E1 proteins revealed stro...

متن کامل

Competition for DNA binding sites between the short and long forms of E2 dimers underlies repression in bovine papillomavirus type 1 DNA replication control.

Papillomaviruses establish a long-term latency in vivo by maintaining their genomes as nuclear plasmids in proliferating cells. Bovine papillomavirus type 1 encodes two proteins required for viral DNA replication: the helicase E1 and the positive regulator E2. The homodimeric E2 is known to cooperatively bind to DNA with E1 to form a preinitiation complex at the origin of DNA replication. The v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 48  شماره 

صفحات  -

تاریخ انتشار 2000