Reducing excess radiation from portal imaging of pediatric brain tumors

نویسندگان

  • Moses Tam
  • Maya Mathew
  • Christine J. Hitchen
  • Ashwatha Narayana
چکیده

Previously we have shown that our routine portal imaging (PI) of the craniofacial region in pediatric brain tumor patients contributed an additional 2%-3% of the prescribed dose and up to 200 cGy to the planning target volume (PTV) and nearby organs at risk (OARs). The purpose of this study is to quantify the reduction in dose to PTV and OARs from portal imaging (PI) of the craniofacial region of pediatric patients treated after the implementation of changes in our portal imaging practices. Twenty consecutive pediatric patients were retrospectively studied since the implementation of changes to our portal imaging procedure. Each received portal imaging of treatment fields and orthogonal setup fields to the craniofacial region. PI modifications included a reduction in the field size of setup orthogonal fields without loss of radiographic information needed for treatment verification. In addition, treatment fields were imaged using a single exposure, rather than double exposure. Dose-volume histograms were generated to quantify the dose to the target and critical structures through PI acquisition. These results were compared with our previous cohort of 20 patients who were treated using the former portal imaging practices. The mean additional target dose from portal imaging following the new guidelines was 1.5% of the prescribed dose compared to 2.5% prior to the new portal image practices (p < 0.001). With the new portal imaging practices, the percentage decrease in portal imaging dose to the brainstem, optic structures, cochlea, hypothalamus, temporal lobes, thyroid, and eyes were 25%, 35%, 35%, 51%, 45%, 80%, and 55%, respectively. Reductions in portal imaging doses were significant in all OARs with exception of the brainstem, which showed a trend towards significance. Changes to portal imaging practices can reduce the radiation dose contribution from portal imaging to surrounding OARs by up to 80%. This may have implications on both late toxicity and second cancer development in pediatric brain tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating fMRI data into 3D conventional radiotherapy treatmentplanning of brain tumors

Introduction: This study was aimed to investigate the beneficial effects of functional magnetic resonance imaging (fMRI) data in treatment planning for patients with CNS tumors in order to decrease the injury of functional regions of the brain followed by increase in life quality and survival of patients. This study pursues a novel approach in planning for the treatment of brai...

متن کامل

Comparison of brain SPECT with 99mTc-MIBI and CT-scan in discriminating of radiation necrosis and brain tumor recurrence [Persian]

Introduction: 99mTc-MIBI has been proposed for use as an imaging agent for various tumors, including breast cancer, lung cancer, lymphomas, melanomas and brain neoplastic lesions. Brain tumors are very common and radiotherapy being major part of treatment following surgery. After radiotherapy, deteriorating clinical status can be due to either radiation necrosis or recurrent tumor. Comput...

متن کامل

Dose to craniofacial region through portal imaging of pediatric brain tumors

The purpose of this study was to determine dose to the planning target volume (PTV) and organs at risk (OARs) from portal imaging (PI) of the craniofacial region in pediatric brain tumor patients treated with intensity-modulated radiation therapy (IMRT). Twenty pediatric brain tumor patients were retrospectively studied. Each received portal imaging of treatment fields and orthogonal setup fiel...

متن کامل

Radiation Necrosis in Pediatric Patients with Brain Tumors Treated with Proton Radiotherapy.

BACKGROUND AND PURPOSE Proton radiotherapy has been increasingly utilized to treat pediatric brain tumors, however, limited information exists regarding radiation necrosis among these patients. Our aim was to evaluate the incidence, timing, clinical significance, risk factors, and imaging patterns of radiation necrosis in pediatric patients with brain tumors treated with proton radiation therap...

متن کامل

Assessment of compliance levels of effective doses in pediatric CT

Introduction: Computed tomography (CT) is a medical imaging modality that produces 3-D cross-sectional images of tissues using several X-ray projections at different angles. Since its introduction in the 1970s, CT usage has been on the increase for both adults and pediatrics. A major challenge of this modality is the high doses of radiation exposure to patients, especially in p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013