Calcineurin-nuclear factor of activated T cells pathway-dependent cardiac remodeling in mice deficient in guanylyl cyclase A, a receptor for atrial and brain natriuretic peptides.

نویسندگان

  • Takeshi Tokudome
  • Takeshi Horio
  • Ichiro Kishimoto
  • Takeshi Soeki
  • Kenji Mori
  • Yuhei Kawano
  • Masakazu Kohno
  • David L Garbers
  • Kazuwa Nakao
  • Kenji Kangawa
چکیده

BACKGROUND Although disruption of guanylyl cyclase (GC) A, a natriuretic peptide receptor, induces cardiac hypertrophy and fibrosis, the molecular mechanism underlying these effects are not well understood. In this study, we examined the role of calcineurin, a calcium-dependent phosphatase, in cardiac remodeling in GCA-knockout (GCA-KO) mice. METHODS AND RESULTS At 14 weeks of age, calcineurin activity, nuclear translocation of nuclear factor of activated T cells c3 (NFATc3), and modulatory calcineurin-interacting protein 1 (MCIP1) gene expressions were increased in the hearts of GCA-KO mice compared with wild-type (WT) mice. Blockade of calcineurin activation by FK506 (6 mg/kg body weight administered subcutaneously once a day from 10 to 14 weeks of age) significantly decreased the heart-to-body weight ratio, cardiomyocyte size, and collagen volume fraction in GCA-KO mice, whereas FK506 did not affect these parameters in WT mice. Overexpression of atrial and brain natriuretic peptides, collagen, and fibronectin mRNAs in GCA-KO mice was also attenuated by FK506. Electrophoretic mobility shift assays demonstrated that GATA4 DNA-binding activity was increased in GCA-KO mice, and this increase was inhibited by calcineurin blockade. In neonatal cultured cardiac myocytes, inhibition of GCA by HS142-1 (100 microg/mL) increased basal and phenylephrine (10(-6) mol/L)-stimulated calcineurin activity, nuclear translocation of NFATc3, and MCIP1 mRNA expression. In contrast, activation of GCA by atrial natriuretic peptide (10(-6) mol/L) inhibited phenylephrine (10(-6) mol/L)-stimulated nuclear translocation of NFATc3. CONCLUSIONS These results suggest that activation of cardiac GCA by locally secreted natriuretic peptides protects the heart from excessive cardiac remodeling by inhibiting the calcineurin-NFAT pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart.

RATIONALE Atrial and brain natriuretic peptides (ANP and BNP, respectively) exert antihypertrophic effects in the heart via their common receptor, guanylyl cyclase (GC)-A, which catalyzes the synthesis of cGMP, leading to activation of protein kinase (PK)G. Still, much of the network of molecular mediators via which ANP/BNP-GC-A signaling inhibit cardiac hypertrophy remains to be characterized....

متن کامل

Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice.

BACKGROUND Atrial natriuretic peptide (ANP), through its guanylyl cyclase-A (GC-A) receptor, not only is critically involved in the endocrine regulation of arterial blood pressure but also locally moderates cardiomyocyte growth. The mechanisms underlying the antihypertrophic effects of ANP remain largely uncharacterized. We examined the contribution of the Na+/H+ exchanger NHE-1 to cardiac remo...

متن کامل

Natriuretic Peptide Signaling via Guanylyl Cyclase (GC)-A: An Endogenous Protective Mechanism of the Heart

Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones, secretions of which are markedly upregulated during cardiac failure, making their plasma levels clinically useful diagnostic markers. ANP and BNP exert potent diuretic, natriuretic and vasorelaxant effects, which are mediated via their common receptor, guanylyl cyclase (GC)-A (also called natriuretic peptide...

متن کامل

Local atrial natriuretic peptide signaling prevents hypertensive cardiac hypertrophy in endothelial nitric-oxide synthase-deficient mice.

The crucial functions of atrial natriuretic peptide (ANP) and endothelial nitric oxide/NO in the regulation of arterial blood pressure have been emphasized by the hypertensive phenotype of mice with systemic inactivation of either the guanylyl cyclase-A receptor for ANP (GC-A-/-) or endothelial nitric-oxide synthase (eNOS-/-). Intriguingly, similar levels of arterial hypertension are accompanie...

متن کامل

Guanylyl cyclase-A inhibits angiotensin II type 1A receptor-mediated cardiac remodeling, an endogenous protective mechanism in the heart.

BACKGROUND Guanylyl cyclase (GC)-A, a natriuretic peptide receptor, lowers blood pressure and inhibits the growth of cardiac myocytes and fibroblasts. Angiotensin II (Ang II) type 1A (AT1A), an Ang II receptor, regulates cardiovascular homeostasis oppositely. Disruption of GC-A induces cardiac hypertrophy and fibrosis, suggesting that GC-A protects the heart from abnormal remodeling. We investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 111 23  شماره 

صفحات  -

تاریخ انتشار 2005