Polymer-stabilized blue phase liquid crystals: a tutorial [Invited]
نویسندگان
چکیده
Blue phase liquid crystals exhibit several attractive features, such as self-assembled three-dimensional cubic structures, optically-isotropic in the voltage-off state, no need for alignment layers, and submillisecond response time. This tutorial gives step-by-step introduction on basic bluephase materials and properties, monomers and polymerization processes, and key device performance criteria for display and photonics applications. ©2011 Optical Society of America OCIS codes: (160.3710) Liquid crystals; (160.5470) Polymers. References and links 1. F. Reinitzer, “Beiträge zur Kenntniss des Cholestherins,” Monatsh. Chem. 9(1), 421–441 (1888). 2. A. Saupe, “On molecular structure and physical properties of thermotropic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7(1), 59–74 (1969). 3. S. A. Brazovskii and S. G. Dmitriev, “Phase transitions in cholesteric liquid crystals,” Zh. Eksp. Teor. Fiz. 69, 979–989 (1975). 4. R. M. Hornreich and S. Shtrikman, Liquid Crystals of Oneand TwoDimensional Order (Springer-Verlag, Berlin, 1980). 5. S. Meiboom, J. P. Sethna, W. P. Anderson, and W. F. Brinkman, “Theory of the blue phase cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981). 6. E. Dubois-Violette and B. Pansu, “Frustration and related topology of blue phases,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 165, 151–182 (1988). 7. P. P. Crooker, Chirality in Liquid Crystals (Springer, New York, 2001), Chap. 7. 8. D. L. Johnson, J. H. Flack, and P. P. Crooker, “Structure and properties of the cholesteric blue phases,” Phys. Rev. Lett. 45(8), 641–644 (1980). 9. P. E. Cladis, T. Garel, and P. Pieranski, “Kossel diagrams show electric-field-induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases,” Phys. Rev. Lett. 57(22), 2841–2844 (1986). 10. R. J. Miller and H. F. Gleeson, “Order parameter measurements from the Kossel diagrams of the liquid-crystal blue phases,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(5), 5011–5016 (1995). 11. H. S. Kitzerow, H. Schmid, A. Ranft, G. Heppke, R. A. M. Hikmet, and J. Lub, “Observation of blue phases in chiral networks,” Liq. Cryst. 14(3), 911–916 (1993). 12. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002). 13. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005). 14. H. Kikuchi, Liquid Crystalline Blue Phases (Springer Berlin / Heidelberg, 2008), pp. 99–117. 15. G. Heppke, H.-S. Kitzerow, and M. Krumrey, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. Lett. 2, 59–65 (1985). 16. J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically-isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011). 17. G. Heppke, B. Jérôme, H.-S. Kitzerow, and P. Pieranski, “Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy,” J. Phys. (France) 50(19), 2991–2998 (1989). 18. H. Stegemeyer and F. Porsch, “Electric field effect on phase transitions in liquid-crystalline blue-phase systems,” Phys. Rev. A 30(6), 3369–3371 (1984). 19. H.-S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 202(1), 51–83 (1991). 20. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322 (2010). 21. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010). 22. J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymerstabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010). #155223 $15.00 USD Received 27 Sep 2011; revised 6 Nov 2011; accepted 6 Nov 2011; published 8 Nov 2011 (C) 2011 OSA 1 December 2011 / Vol. 1, No. 8 / OPTICAL MATERIALS EXPRESS 1527 23. T. Seshadri and H. J. Haupt, “Novel ferrocene-based chiral Schiff's base derivative with a twist-grain boundary phase (TGBA) and a blue phase,” Chem. Commun. (Camb.) 7(7), 735–736 (1998). 24. J. Buey, P. Espinet, H. S. Kitzerow, and J. Strauss, “Metallomesogens presenting blue phases in a glassy state and in metallomesogen/nematic mixtures,” Chem. Commun. (Camb.) 5(5), 441–442 (1999). 25. G. Heppke, D. Krüerke, C. Löhning, D. Lötzsch, D. Moro, M. Müller, and H. Sawade, “New chiral discotic triphenylene derivatives exhibiting a cholesteric blue phase and a ferroelectrically switchable columnar mesophase,” J. Mater. Chem. 10(12), 2657–2661 (2000). 26. Y. Haseba and T. Kuninobu, “Optically isotropic liquid crystal medium and optical device,” U.S. patent 7,722,783 B2 (2010). 27. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009). 28. P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 116(3-4), 197–206 (1985). 29. H. F. Gleeson and H. J. Coles, “Dynamic properties of blue-phase mixtures,” Liq. Cryst. 5(3), 917–926 (1989). 30. L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011). 31. M. Wittek, N. Tanaka, M. Bremer, D. Pauluth, K. Tarumi, M. C. Wu, D. M. Song, and S. E. Lee, “New materials for polymer-stabilized blue phase,” SID Int. Symp. Digest Tech. Papers 42(1), 292–293 (2011). 32. J. Yan and S. T. Wu, “Effect of polymer concentration and composition on blue-phase liquid crystals,” J. Disp. Technol. 7(9), 490–493 (2011). 33. Y. Haseba and H. Kikuchi, “Optically isotropic chiral liquid crystals induced by polymer network and their electro-optical behavior,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 470(1), 1–9 (2007). 34. C. Y. Fan, C. T. Wang, T. H. Lin, F. C. Yu, T. H. Huang, C. Y. Liu, and N. Sugiura, “Hysteresis and residual birefringence free polymer-stabilized blue phase liquid crystal,” SID Int. Symp. Digest Tech. Papers 42(1), 213– 215 (2011). 35. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009). 36. M. Jiao, Y. Li, and S. T. Wu, “Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes,” Appl. Phys. Lett. 96(1), 011102 (2010). 37. H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011). 38. L. Rao, J. Yan, S. T. Wu, Y. H. Chiu, H. Y. Chen, C. C. Liang, C. M. Wu, P. J. Hsieh, S. H. Liu, and K. L. Cheng, “Critical field for a hysteresis-free blue-phase liquid crystal device,” J. Disp. Technol. 7(12), 627–629 (2011). 39. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002). 40. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. (Deerfield Beach Fla.) 18(1), 48–51 (2006). 41. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011). 42. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010). 43. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011). 44. C. H. Lin, Y. Y. Wang, and C. W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
منابع مشابه
Emerging Polymer-Stabilized Blue Phase Liquid Crystal Display
Polymer-stabilized blue-phase liquid crystals hold great potential for future display applications. Some technical challenges, such as blue-phase temperature range, operation voltage, hysteresis, and voltage holding ratio remain to be overcome before widespread commercialization can be realized. In this paper, we review recent advances in this emerging technology.
متن کاملA giant polymer lattice in a polymer-stabilized blue phase liquid crystal.
Ultrasmall-angle synchrotron X-ray scattering measurements showed that a three-dimensional polymer lattice of a few 100 nm order with body-centered cubic O(8-) symmetry was formed in a polymer-stabilized blue phase liquid crystal. We obtained clear experimental evidence that the polymer chains condensed selectively in the disclinations within the blue phase during photo-polymerization of monome...
متن کاملA reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals.
We demonstrate a reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals (DDPSBP-LC). At the voltage-off state, the dye molecules and liquid crystals form the structure of the double twist cylinders. As a result, the DDPSBP-LC is in dark state due to the combination of Bragg reflection and light absorption. At the voltage-on state, the blue...
متن کاملPolymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications
Polymer-stabilized optically isotropic liquid crystals, including blue phases, are emerging as a strong contender for next-generation display technology because they exhibit some revolutionary features such as no need for surface alignment, submillisecond response time, isotropic dark state, and cell gap insensitivity. The basic material properties, including electric field-induced birefringenc...
متن کاملElectrically switched color with polymer-stabilized blue-phase liquid crystals.
We report an electrical-field switched color device using a polymer-stabilized blue-phase (PSBP) liquid crystal in which the Bragg-reflected color of the blue phase (BP) can be switched to reflect a second color. The phase-separated three-dimensional polymer network transcribes the cubic structure of a BP liquid crystal and restrains the deformation of cubic lattice by the external electric fie...
متن کامل