Asymptotic Lattices and W-Congruences in Integrable Discrete Geometry

نویسنده

  • Adam DOLIWA
چکیده

The asymptotic lattices and their transformations are included into the theory of quadrilateral lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete asymptotic nets and W-congruences in Plücker line geometry

The asymptotic lattices and their transformations are studied within the line geometry approach. It is shown that the discrete asymptotic nets are represented by isotropic congruences in the Plücker quadric. On the basis of the Lelieuvre-type representation of asymptotic lattices and of the discrete analog of the Moutard transformation, it is constructed the discrete analog of the W–congruences...

متن کامل

Integrable Discrete Geometry: the Quadrilateral Lattice, its Transformations and Reductions

We review recent results on Integrable Discrete Geometry. It turns out that most of the known (continuous and/or discrete) integrable systems are particular symmetries of the quadrilateral lattice, a multidimensional lattice characterized by the planarity of its elementary quadrilaterals. Therefore the linear property of planarity seems to be a basic geometric property underlying integrability....

متن کامل

Geometric discretization of the Bianchi system

We introduce the dual Koenigs lattices, which are the integrable discrete analogues of conjugate nets with equal tangential invariants, and we find the corresponding reduction of the fundamental transformation. We also introduce the notion of discrete normal congruences. Finally, considering quadrilateral lattices ”with equal tangential invariants” which allow for harmonic normal congruences we...

متن کامل

2 00 1 Asymptotic lattices and their integrable reductions I : the Bianchi and the Fubini - Ragazzi lattices

We review recent results on asymptotic lattices and their integrable reductions. We present the theory of general asymptotic lattices in R 3 together with the corresponding theory of their Darboux-type transformations. Then we study the discrete analogues of the Bianchi surfaces and their transformations. Finally, we present the corresponding theory of the discrete analogues of the isothermally...

متن کامل

The Normal Dual Congruences and the Dual Bianchi Lattice

The main goal of the paper is to find the discrete analogue of the Bianchi system in spaces of arbitrary dimension together with its geometric interpretation. We show that the proper geometric framework of such generalization is the language of dual quadrilateral lattices and of dual congruences. After introducing the notion of the dual Koenigs lattice in a projective space of arbitrary dimensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001