From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows
نویسندگان
چکیده
Understanding turbulent flows arising from random dispersive waves that interact strongly through nonlinearities is a challenging issue in physics. Here we report the observation of a characteristic transition: strengthening the nonlocal character of the nonlinear response drives the system from a fully turbulent regime, featuring a sea of coherent small-scale dispersive shock waves (shocklets) towards the unexpected emergence of a giant collective incoherent shock wave. The front of such global incoherent shock carries most of the stochastic fluctuations and is responsible for a peculiar folding of the local spectrum. Nonlinear optics experiments performed in a solution of graphene nano-flakes clearly highlight this remarkable transition. Our observations shed new light on the role of long-range interactions in strongly nonlinear wave systems operating far from thermodynamic equilibrium, which reveals analogies with, for example, gravitational systems, and establishes a new scenario that can be common to many turbulent flows in photonic quantum fluids, hydrodynamics and Bose-Einstein condensates.
منابع مشابه
Investigation of Coherent and Incoherent Laser Beams Propagation Through Turbulent Atmosphere
In this paper propagation of combined laser beam through atmosphere is investigated. Laser beam is combined via lens array arrangement. Turbulence is considered as an affecting factor of atmosphere and its effects on transverse coherence length (Fried parameter), peak intensity, propagation efficiency, and spot size of the laser beam is investigated. Coherent and incoherent combined beam are co...
متن کاملLow-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks
[1] We present observations of low-frequency waves (0.25 Hz < f < 10 Hz) at five quasi-perpendicular interplanetary (IP) shocks observed by the Wind spacecraft. Four of the five IP shocks had oblique precursor whistler waves propagating at angles with respect to the magnetic field of 20 –50 and large propagation angles with respect to the shock normal; thus they do not appear to be phase standi...
متن کاملStudy of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملOverview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملAn Optimized Low-Dissipation Monotonicity-Preserving Scheme for Numerical Simulations of High-Speed Turbulent Flows
This paper presents an optimized low-dissipation monotonicity-preserving (MPLD) scheme for numerical simulations of high-speed turbulent flows with shock waves. By using the bandwidth dissipation optimization method (BDOM), the linear dissipation of the original MP scheme of Suresh and Huynh (J. Comput. Phys. 136, 83–99, 1997) is significantly reduced in the newly developed MP-LD scheme. Meanwh...
متن کامل