Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3'-hydroxyacetanilide, in mouse liver.
نویسندگان
چکیده
Acetaminophen (250 mg/kg) administered intraperitoneally to fasted, phenobarbital-induced mice produced hepatotoxicity. No hepatotoxicity was observed after the administration of the regioisomer 3'-hydroxyacetanilide (600 mg/kg). Similar levels of covalent binding to liver homogenates occurred in mice receiving either acetaminophen or 3'-hydroxyacetanilide at these doses. However, subcellular fractionation techniques revealed that the acetaminophen treatment produced greater levels of covalent binding to mitochondrial proteins than 3'-hydroxyacetanilide. In addition, acetaminophen depleted mitochondrial glutathione levels more extensively than 3'-hydroxyacetanilide. Plasma membrane calcium-ATPase activity was reduced to 79.8% and 55.7% of control values at 1 h and 6 h, respectively, following the administration of acetaminophen. No inhibition of this enzyme was detected in mice receiving 3'-hydroxyacetanilide. Acetaminophen also induced alterations in mitochondrial calcium levels and decreased the ability of isolated mitochondria to sequester calcium. These effects were not produced by 3'-hydroxyacetanilide. Our results indicate that acetaminophen induces alterations in calcium homeostasis while 3'-hydroxyacetanilide does not.
منابع مشابه
A comparative study of mouse liver proteins arylated by reactive metabolites of acetaminophen and its nonhepatotoxic regioisomer, 3'-hydroxyacetanilide.
Acetaminophen (4'-hydroxyacetanilide), a widely used analgesic/antipyretic drug, is hepatotoxic in large doses, whereas the m-hydroxy isomer of acetaminophen, 3'-hydroxyacetanilide, is not hepatotoxic. Both are oxidized by mouse liver cytochromes P-450 to reactive metabolites that bind covalently to hepatic proteins. Because previous studies have shown that peak levels of liver protein adducts ...
متن کاملImmunochemical comparison of 3'-hydroxyacetanilide and acetaminophen binding in mouse liver.
The hepatotoxicity of the analgesic acetaminophen is believed to be mediated by covalent binding to critical proteins. Radiolabeled 3'-hydroxyacetanilide, a regioisomer of acetaminophen, covalently binds to proteins at levels similar to those of acetaminophen, but without toxicity. Covalent binding has recently been detected by Western blot to a 50-kDa microsomal protein that comigrated with CY...
متن کاملp53 Contributes to Differentiating Gene Expression Following Exposure to Acetaminophen and Its Less Hepatotoxic Regioisomer Both In Vitro and In Vivo
The goal of the present study was to compare hepatic toxicogenomic signatures across in vitro and in vivo mouse models following exposure to acetaminophen (APAP) or its relatively nontoxic regioisomer 3'-hydroxyacetanilide (AMAP). Two different Affymetrix microarray platforms and one Agilent Oligonucleotide microarray were utilized. APAP and AMAP treatments resulted in significant and large cha...
متن کاملMICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS
Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...
متن کاملEffect of p-hydroxyacetanilide on liver cancer induction by N hydroxy-N-2-fluorenylacetamide.
We explored, in rats, the conditions underlying the induction of liver tumors by ./V-hydroxy-./V-2-fluorenylacetamide (N-OH-FAA) in terms of the participation of an ultimate carcinogen in the form of the sulfate ester. Male rats were fed 2 dose levels, i.e., 0.0213%(0.89 mmole/kg) and 0.032%(1.34 mmoles/kg) of N-OH-FAA in the diet, with or without 0.89% (59 mmoles/kg) p-hydroxyacetanilide, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 264 17 شماره
صفحات -
تاریخ انتشار 1989