Partial * - algebras of Distributions

نویسندگان

  • Camillo Trapani
  • Francesco Tschinke
چکیده

The problem of multiplying elements of the conjugate dual of certain kind of commutative generalized Hilbert algebras, which are dense in the set of C∞-vectors of a self-adjoint operator, is considered in the framework of the so-called duality method. The multiplication is defined by identifying each distribution with a multiplication operator acting on the natural rigged Hilbert space. Certain spaces, that are an abstract version of the Bessel potential spaces, are used to factorize the product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A RELATION BETWEEN THE CATEGORIES Set * , SetT, Set AND SetT

In this article, we have shown, for the add-point monad T, thepartial morphism category Set*is isomorphic to the Kleisli category SetT. Alsowe have proved that the category, SetT, of T-algebras is isomorphic to thecategory Set of pointed sets. Finally we have established commutative squaresinvolving these categories.

متن کامل

Abstract structure of partial function $*$-algebras over semi-direct product of locally compact groups

This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism.  Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...

متن کامل

A Matrix-based Method for Analysing Stochastic Process Algebras

This paper demonstrates how three stochastic process algebras can be mapped on to a generally-distributed stochastic transition system. We demonstrate an aggregation technique on these stochastic transition systems and show how this can be implemented as a matrix-analysis method for finding steady-state distributions. We verify that the time complexity of the algorithm is a considerable improve...

متن کامل

Combinatorial Gelfand Models for Semisimple Diagram Algebras

We construct combinatorial (involutory) Gelfand models for the following diagram algebras in the case when they are semi-simple: Brauer algebras, their partial analogues, walled Brauer algebras, their partial analogues, Temperley-Lieb algebras, their partial analogues, walled Temperley-Lieb algebras, their partial analogues, partition algebras and their Temperley-Lieb analogues.

متن کامل

Rectifying Partial Algebras over Operads of Complexes

In [2] Kriz and May introduced partial algebras over an operad. In this paper we prove that, in the category of chain complexes, partial algebras can be functorially replaced by quasi-isomorphic algebras. In particular, partial algebras contain all of the important homological and homotopical information that genuine algebras do. Applying this result to McClure’s partial algebra in [6] shows th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005