Uncertainty Quantification in Rothermel’s Model Using an Efficient Sampling Method

نویسندگان

  • Edwin Jimenez
  • M. Yousuff Hussaini
  • Scott L. Goodrick
چکیده

111 Abstract—The purpose of the present work is to quantify parametric uncertainty in Rothermel’s wildland fire spread model (implemented in software such as BehavePlus3 and FARSITE), which is undoubtedly among the most widely used fire spread models in the United States. This model consists of a nonlinear system of equations that relates environmental variables (input parameter groups) such as fuel type, fuel moisture, terrain, and wind to describe the fire environment. This model predicts important fire quantities (output parameters) such as the head rate of spread, spread direction, effective wind speed, and fireline intensity. The proposed method, which we call sensitivity derivative enhanced sampling (SDES), exploits sensitivity derivative information to accelerate the convergence of the classical Monte Carlo method. Coupled with traditional variance reduction procedures, it offers up to two orders of magnitude acceleration in convergence, which implies that two orders of magnitude fewer samples are required for a given level of accuracy. Thus, it provides an efficient method to quantify the impact of input uncertainties on the output parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kriging-model-based uncertainty quantification in computational fluid dynamics

This paper proposes an efficient and accurate non-intrusive uncertainty quantification (UQ) method in computational fluid dynamics (CFD). Emphasis is placed on developing an UQ method that can accurately predict stochastic behaviors of output solution with small number of sampling simulations, and is also accurate for non-smooth output uncertainty responses. The proposed method is based on Krig...

متن کامل

A Domain Decomposition Approach for Uncertainty Analysis

This paper proposes a decomposition approach for uncertainty analysis of systems governed by partial differential equations (PDEs). The system is split into local components using domain decomposition. Our domain-decomposed uncertainty quantification (DDUQ) approach performs uncertainty analysis independently on each local component in an “offline” phase, and then assembles global uncertainty a...

متن کامل

Probabilistic Damage Characterization using a Computationally-Efficient Bayesian Approach

This work presents a computationally-efficient approach for damage determination that quantifies uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes’ Theorem to combine any prior knowledge an analyst may have about the nature of th...

متن کامل

 The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study

Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...

متن کامل

Efficient uncertainty quantification techniques in inverse problems for Richards’ equation using coarse-scale simulation models

0309-1708/$ see front matter 2008 Elsevier Ltd. A doi:10.1016/j.advwatres.2008.11.009 * Corresponding author. E-mail address: [email protected] (P. Dost This paper concerns efficient uncertainty quantification techniques in inverse problems for Richards’ equation which use coarse-scale simulation models. We consider the problem of determining saturated hydraulic conductivity fields condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007