Protein dynamics and the all‐ferrous [Fe4 S 4] cluster in the nitrogenase iron protein

نویسندگان

  • Ming‐Liang Tan
  • B. Scott Perrin
  • Shuqiang Niu
  • Qi Huang
  • Toshiko Ichiye
چکیده

In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum-FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe4 S4 ](1+) cluster, evidence also exists for an all-ferrous [Fe4 S4 ](0) cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all-ferrous [Fe4 S4 ](0) cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, "density functional theory plus Poisson Boltzmann" calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all-ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial synthesis and structure of an all-ferrous analogue of the fully reduced [Fe4S4]0 cluster of the nitrogenase iron protein.

The synthetic cubane-type iron-sulfur clusters [Fe(4)S(4)(SR)(4)](z) form a four-member electron transfer series (z = 3-, 2-, 1-, and 0), all members of which except that with z = 0 have been isolated and characterized. They serve as accurate analogues of protein-bound [Fe(4)S(4)(SCys)(4)](z) redox centers, which, in terms of core oxidation states, exhibit the redox couples [Fe(4)S(4)](3+/2+) a...

متن کامل

Initial synthesis and structure of an all-ferrous analogue of the fully reduced [Fe4S4] cluster of the nitrogenase iron protein

The synthetic cubane-type iron–sulfur clusters [Fe4S4(SR)4] form a four-member electron transfer series (z 3 , 2 , 1 , and 0), all members of which except that with z 0 have been isolated and characterized. They serve as accurate analogues of protein-bound [Fe4S4(SCys)4] redox centers, which, in terms of core oxidation states, exhibit the redox couples [Fe4S4] /2 and [Fe4S4] /1 . Clusters with ...

متن کامل

Nonenzymatic Synthesis of the P-Cluster in the Nitrogenase MoFe Protein: Evidence of the Involvement of All-Ferrous [Fe4S4]0 Intermediates

The P-cluster in the nitrogenase MoFe protein is a [Fe8S7] cluster and represents the most complex FeS cluster found in Nature. To date, the exact mechanism of the in vivo synthesis of the P-cluster remains unclear. What is known is that the precursor to the P-cluster is a pair of neighboring [Fe4S4]-like clusters found on the ΔnifH MoFe protein, a protein expressed in the absence of the nitrog...

متن کامل

Berberine protects the liver and kidney against functional disorders and histological damages induced by ferrous sulfate

Objective(s): Iron is an essential element for living organisms. Iron overload can have detrimental effects on health. This study pertains to the protective role of berberine against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats.Materials and Methods: The rats were divided into four groups (n=7): Sham, Ber (10 mg/kg/day for 14 days, by gavage), ...

متن کامل

Determination of antiferromagnetic exchange coupling in the tetrahedral thiolate-bridged diferrous complex [Fe2(SEt)6]2-.

Protein-bound iron-sulfur clusters and their synthetic analogues are characterized by tetrahedral metal sites, multiple oxidation levels, and exchange coupling. The recent attainment of several all-ferrous protein clusters and the presence of sulfide- and thiolate-bridged sites in the all-ferrous state of the nitrogenase P-cluster provides an imperative for determination of exchange coupling be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016