Biologically Relevant Classes of Boolean Functions
نویسندگان
چکیده
A large influx of experimental data has prompted the development of innovative computational techniques for modeling and reverse engineering biological networks. While finite dynamical systems, in particular Boolean networks, have gained attention as relevant models of network dynamics, not all Boolean functions reflect the behaviors of real biological systems. In this work, we focus on two classes of Boolean functions and study their applicability as biologically relevant network models: the nested and partially nested canalyzing functions. We begin by analyzing the nested canalyzing functions (NCFs), which have been proposed as gene regulatory network models due to their stability properties. We introduce two biologically motivated measures of network stability, the average height and average cycle length on a state space graph and show that, on average, networks comprised of NCFs are more stable than general Boolean networks. Next, we introduce the partially nested canalyzing functions (PNCFs), a generalization of the NCFs, and the nested canalyzing depth, which measures the extent to which it retains a nested canalyzing structure. We characterize the structure of functions with a given depth and compute the expected activities and sensitivities of the variables. This analysis quantifies how canalyzation leads to higher stability in Boolean networks. We find that functions become decreasingly sensitive to input perturbations as the canalyzing depth increases, but exhibit rapidly diminishing returns in stability. Additionally, we show that as depth increases, the dynamics of networks using these functions quickly approach the critical regime, suggesting that real networks exhibit some degree of canalyzing depth, and
منابع مشابه
ON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES
Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...
متن کاملGene expression modeling through positive boolean functions
In the framework of gene expression data analysis, the selection of biologically relevant sets of genes and the discovery of new subclasses of diseases at bio-molecular level represent two significant problems. Unfortunately, in both cases the correct solution is usually unknown and the evaluation of the performance of gene selection and clustering methods is difficult and in many cases unfeasi...
متن کاملAnalysis of Boolean Functions based on Interaction Graphs and their influence in System Biology
Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but g...
متن کاملDetecting controlling nodes of boolean regulatory networks
Boolean models of regulatory networks are assumed to be tolerant to perturbations. That qualitatively implies that each function can only depend on a few nodes. Biologically motivated constraints further show that functions found in Boolean regulatory networks belong to certain classes of functions, for example, the unate functions. It turns out that these classes have specific properties in th...
متن کاملBounds on the Average Sensitivity of Nested Canalizing Functions
Nested canalizing Boolean functions (NCF) play an important role in biologically motivated regulatory networks and in signal processing, in particular describing stack filters. It has been conjectured that NCFs have a stabilizing effect on the network dynamics. It is well known that the average sensitivity plays a central role for the stability of (random) Boolean networks. Here we provide a ti...
متن کامل