Tail Asymptotics for the Total Progeny of the Criti- Cal Killed Branching Random Walk

نویسنده

  • ELIE AÏDÉKON
چکیده

We look at the branching random walk on R+ killed below zero. Let b ≥ 2 be a deterministic integer which represents the number of children of the branching random walk, and x ≥ 0 be the position of the (unique) ancestor. We introduce the rooted b-ary tree T , and we attach at every vertex u except the root an independent random variable Xu picked from a common distribution (we denote by X a generic random variable having this distribution). We define the position of the vertex u by S(u) := x + ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Progeny in Killed Branching Random Walk

We consider a branching random walk for which the maximum position of a particle in the n’th generation, Rn, has zero speed on the linear scale: Rn/n → 0 as n → ∞. We further remove (“kill”) any particle whose displacement is negative, together with its entire descendence. The size Z of the set of un-killed particles is almost surely finite [26, 31]. In this paper, we confirm a conjecture of Al...

متن کامل

Asymptotics for the survival probability in a killed branching random walk

Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we pro...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Annealed Moment Lyapunov Exponents for a Branching Random Walk in a Homogeneous Random Branching Environment∗

We consider a continuous-time branching random walk on the lattice Z (d ≥ 1) evolving in a random branching environment. The motion of particles proceeds according to the law of a simple symmetric random walk. The branching medium formed of Markov birth-and-death processes at the lattice sites is assumed to be spatially homogeneous. We are concerned with the long-time behavior of the quenched m...

متن کامل

Tail Asymptotics for the Maximum of Perturbed Random Walk

Stanford University Consider a random walk S = (Sn : n ≥ 0) that is “perturbed” by a stationary sequence (ξn : n ≥ 0) to produce the process (Sn + ξn : n ≥ 0). This paper is concerned with computing the distribution of the all-time maximum M∞ = max{Sk + ξk : k ≥ 0} of perturbed random walk with a negative drift. Such a maximum arises in several different applications settings, including product...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010