Mining Smart Card Data from an Urban Transit Network

نویسنده

  • Bruno Agard
چکیده

In large urban areas, smooth running public transit networks are key to viable development. Currently, economic and environmental issues are fueling the need for these networks to adequately serve travel demand, thereby increasing their competitiveness and their market share. Better balance between transit supply and demand will also help reduce and control operating costs. The fact is, however, that transit operators are finding it extremely difficult to adjust the service to meet the demand, because this demand changes continuously with the time or day of travel (period of the day, day of the week, season or holiday) and other factors like weather and service breakdown. In order to enhance their service, operators need to better understand the travel demand (customer behaviors and the variability of the demand in space and time). This can be achieved only by continuously monitoring the day-to-day activities of users throughout the transit network. Some large cities around the world take advantage of smart card capabilities to manage their transit networks by using Smart Card Automated Fare Collection Systems (SCAFCS). An SCAFCS gives travelers greater flexibility, since a single card may be used by one user at various times and on different parts of the transit network, and may support various fare possibilities (by travel, line, zone, period, etc.). For transit operators, these systems not only validate and collect fares, but also represent a rich source of continuous data regarding the use of their network. Actually, this continuous dataset (developed for fare collection) has the potential to provide new knowledge about transit use. Following the application of various pretreatments which make it possible to extract real-time activity, data mining techniques can reveal interesting patterns. These techniques are aimed at precisely describing customer behavior, identifying sets of customers with similar behaviors, and measuring the spatial and temporal variability of transit use. Patterns are extracted and analyzed to document various issues, such as identifying transit use cycles or homogeneous days and weeks of travel for various periods of the year. This information is required for a better understanding and modeling of customer behavior, and consequently better adjustment of the service to the demand. These adjustments may, for instance, lead to the restructuring of the transit network, to the adaptation of route scheduling or to the definition of new and different subscription options (fares). Below, results from various experiments conducted with a real dataset are provided. They show the potential of data mining to provide useful and novel information about user behavior on a transit network. The data processed in the study are extracted from a system operating in a Canadian city (Gatineau, Quebec).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring transit use variability with smart-card data

The potential of smart-card data for measuring the variability of urban public transit network use is the focus of this paper. Data collected during 277 consecutive days of travel on a Canadian transit network are processed for this purpose. The organization of data using an object-oriented approach is discussed. Then, measures of spatial and temporal variability of transit use for various type...

متن کامل

Mining Public Transport User Behaviour from Smart Card Data

In urban public transport, smart card data is made of millions of observations of users boarding vehicles over the network across several days. The issue addresses whether data mining techniques can be used to study user behaviour from these observations. This must be done with the help of transportation planning knowledge. Hence, this paper presents a common “transportation planning/data minin...

متن کامل

An Evaluation of the Low-Carbon Effects of Urban Rail Based on Mode Shifts

Urban rail is widely considered to be a form of low-carbon green transportation, but there is a lack of specific quantitative research to support this. By comparing the mode, distance, and corresponding energy consumption of residents before and after the opening of rail transit, this paper establishes a carbon reduction method for rail transit. A measurement model takes the passenger carbon em...

متن کامل

Measuring variability of mobility patterns from multiday smart-card data

The availability of large amounts of mobility data has stimulated the research in discovering patterns and understanding regularities. Comparatively, less attention has been paid to the study of variability, which, however, has been argued as equally important as regularities, since variability identifies diversity. In a transport network, variability exists from person to person, from place to...

متن کامل

Discovering functional zones using bus smart card data and points of interest in Beijing

Cities comprise various functional zones, including residential, educational, commercial zones, etc. It is important for urban planners to identify different functional zones and understand their spatial structure within the city in order to make better urban plans. In this research, we used 77976010 bus smart card records of Beijing City in one week in April 2008 and converted them into two-di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009