Face Recognition and Gender Classification Using Orthogonal Nearest Neighbour Feature Line Embedding

نویسندگان

  • Gang-Feng Ho
  • Ying-Nong Chen
  • Chin-Chuan Han
  • Kuo-Chin Fan
چکیده

In this paper, a novel manifold learning algorithm for face recognition and gender classification ‐ orthogonal nearest neighbour feature line embedding (ONNFLE) ‐ is proposed. Three of the drawbacks of the nearest feature space embedding (NFSE) method are solved: the extrapolation/interpolation error, high computational load and non‐orthogonal eigenvector problems. The extrapolation error occurs if the distance from a specified point to one line is small when that line passes through two farther points. The scatter matrix generated by the invalid discriminant vectors does not efficiently preserve the locally topological structure ‐ incorrect selection reduces recognition. To remedy this, the nearest neighbour (NN) selection strategy was used in the proposed method. In addition, the high computational load was reduced using a selection strategy. The last problem involved solving the non‐ orthogonal eigenvectors found with the NFSE algorithm. The proposed algorithm generated orthogonal bases possessing more discriminating power. Experiments were conducted to demonstrate the effectiveness of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Face Recognition Using Legendre Moments

The wide range of variations in human face due to view point, pose, illumination and expression deteriorate the recognition performance of the existing Face recognition systems. This paper proposes a new approach to face recognition problem using Legendre moments for representing features and nearest neighbor classifier for classification. The Legendre moments are orthogonal and scale invariant...

متن کامل

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

A Novel Approach to Face Recognition using Image Segmentation Based on SPCA-KNN Method

In this paper we propose a novel method for face recognition using hybrid SPCA-KNN (SIFT-PCAKNN) approach. The proposed method consists of three parts. The first part is based on preprocessing face images using Graph Based algorithm and SIFT (Scale Invariant Feature Transform) descriptor. Graph Based topology is used for matching two face images. In the second part eigen values and eigen vector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012