Computing elliptic curve discrete logarithms with improved baby-step giant-step algorithm

نویسندگان

  • Steven D. Galbraith
  • Ping Wang
  • Fangguo Zhang
چکیده

The negation map can be used to speed up the computation of elliptic curve discrete logarithms using either the baby-step giant-step algorithm (BSGS) or Pollard rho. Montgomery’s simultaneous modular inversion can also be used to speed up Pollard rho when running many walks in parallel. We generalize these ideas and exploit the fact that for any two elliptic curve points X and Y , we can efficiently get X − Y when we compute X + Y . We apply these ideas to speed up the babystep giant-step algorithm. Compared to the previous methods, the new methods can achieve a significant speedup for computing elliptic curve discrete logarithms in small groups or small intervals. Another contribution of our paper is to give an analysis of the averagecase running time of Bernstein and Lange’s “grumpy giants and a baby” algorithm, and also to consider this algorithm in the case of groups with efficient inversion. Our conclusion is that, in the fully-optimised context, both the interleaved BSGS and grumpy-giants algorithms have superior average-case running time compared with Pollard rho. Furthermore, for the discrete logarithm problem in an interval, the interleaved BSGS algorithm is considerably faster than the Pollard kangaroo or Gaudry-Schost methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Baby-Step Giant-Step Algorithm and Some Applications to Cryptanalysis

We describe a new variant of the well known Baby-Step Giant-Step algorithm in the case of some discrete logarithms with a special structure. More precisely, we focus on discrete logarithms equal to products in groups of unknown order. As an example of application, we show that this new algorithm enables to cryptanalyse a variant of the GPS scheme proposed by Girault and Lefranc at CHES 2004 con...

متن کامل

Analysis of Baby-Step Giant-Step Algorithms for Non-uniform Distributions

The baby-step giant-step algorithm, BSGS for short, was proposed by Shanks in order to compute the class number of an imaginary quadratic field. This algorithm is at present known as a very useful tool for computing with respect to finite groups such as the discrete logarithms and counting the number of the elements. Especially, the BSGS is normally made use of counting the rational points on t...

متن کامل

Pollard’s Rho Algorithm for Elliptic Curves

Elliptic curve cryptographic protocols often make use of the inherent hardness of the discrete logarithm problem, which is to solve kG = P for k. There is an abundance of evidence suggesting that elliptic curve cryptography is more secure than the classical case. One reason for this is the best known general-purpose algorithm to solve the elliptic curve discrete logarithm problem is Pollard’s R...

متن کامل

Baby-Step Giant-Step Algorithms for Non-uniform Distributions

The baby-step giant-step algorithm, due to Shanks, may be used to solve the discrete logarithm problem in arbitrary groups. The paper explores a generalisation of this algorithm, where extra baby steps may be computed after carrying out giant steps (thus increasing the giant step size). The paper explores the problem of deciding how many, and when, extra baby steps should be computed so that th...

متن کامل

Integer Factorization and Computing Discrete Logarithms in Maple

As part of our MITACS research project at Simon Fraser University, we have investigated algorithms for integer factorization and computing discrete logarithms. We have implemented a quadratic sieve algorithm for integer factorization in Maple to replace Maple’s implementation of the MorrisonBrillhart continued fraction algorithm which was done by Gaston Gonnet in the early 1980’s. We have also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. in Math. of Comm.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015