Quasilinearization Approach to Nonlinear Problems in Physics

نویسنده

  • V. B. Mandelzweig
چکیده

The general conditions under which the quadratic, uniform and monotonic convergence in the quasilinearization method could be proved are formulated and elaborated. The method, whose mathematical basis in physics was discussed recently by one of the present authors (VBM), approximates the solution of a nonlinear differential equation by treating the nonlinear terms as a perturbation about the linear ones, and unlike perturbation theories is not based on the existence of some kind of a small parameter. It is shown that the quasilinearization method gives excellent results when applied to difficult nonlinear differential equations in physics, such as the Blasius, Duffing, Lane-Emden and Thomas-Fermi equations. The first few quasilinear iterations already provide extremely accurate and numerically stable answers. PACS numbers: 02.30.Mv, 04.25.Nx, 11.15.Tk ∗Electronic mail: [email protected] †Electronic mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of variational problems via Haar wavelet quasilinearization technique

In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.

متن کامل

Quasilinearization Approach to Nonlinear Problems in Physics with Application to Nonlinear ODEs

The general conditions under which the quadratic, uniform and monotonic convergence in the quasilinearization method of solving nonlinear ordinary differential equations could be proved are formulated and elaborated. The generalization of the proof to partial differential equations is straight forward. The method, whose mathematical basis in physics was discussed recently by one of the present ...

متن کامل

A new approach for solving optimal nonlinear control problems using decriminalization and rationalized Haar functions

This paper presents a numerical method based on quasilinearization and rationalized Haar functions for solving nonlinear optimal control problems including terminal state constraints, state and control inequality constraints. The optimal control problem is converted into a sequence of quadratic programming problems. The rationalized Haar functions with unknown coefficients are used to approxima...

متن کامل

A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation

In this paper, an efficient numerical scheme based on uniform Haar wavelets and the quasilinearization process is proposed for the numerical simulation of time dependent nonlinear Burgers’ equation. The equation has great importance in many physical problems such as fluid dynamics, turbulence, sound waves in a viscous medium etc. The Haar wavelet basis permits to enlarge the class of functions ...

متن کامل

Quasilinearization–Barycentric approach for numerical investigation of the boundary value Fin problem

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001