Protective effects of apomorphine against zinc-induced neurotoxicity in cultured cortical neurons.
نویسندگان
چکیده
There is evidence that excessive zinc (Zn(2+)) release from presynaptic terminals following brain injuries such as ischemia and severe epileptic seizures induces neuronal cell death. Apomorphine (Apo), a dopamine receptor agonist, has been shown to have pleiotropic biological functions. In this study, we investigated whether Apo protects cultured cortical neurons from neurotoxicity provoked by excessive Zn(2+) exposure. Pretreatment with Apo dose- and time-dependently ameliorated Zn(2+) neurotoxicity. In addition, pretreatment with Apo prevented intracellular nicotinamide adenine dinucleotide (NAD(+)) and ATP depletion caused by Zn(2+) exposure. Dopamine receptor antagonists did not influence Apo protection against Zn(2+) neurotoxicity. Apo is shown to be autoxidized to produce oxidized products such as reactive oxygen species and quinones. N-Acetylcysteine, a thiol compound, partially reduced Apo protection. Entry of Zn(2+) into neurons is thought to be a critical step of Zn(2+) neurotoxicity. Interestingly, we found that pretreatment with Apo decreased elevation of intracellular Zn(2+) levels after Zn(2+) exposure and induced mRNA expression of the zinc transporter ZnT1, which transports intracellular Zn(2+) out of cells, and metallothionein. Taken together, these results suggest that the protective effects of Apo are regulated, at least in part, by its oxidized products, and preventing intracellular accumulation of Zn(2+) contributes to Apo protection against Zn(2+) neurotoxicity.
منابع مشابه
Screening seven Iranian medicinal plants for protective effects against β-Amyloid-induced cytotoxicity in cultured cerebellar granule neurons
Background and objectives: Alzheimer's disease (AD) as a neurodegenerative disorder is the most common form of dementia in the elderly. According to the amyloid hypothesis, accumulation of amyloid beta (Aβ) plaques, which are mostly constituted of Aβ peptide aggregates, triggers pathological cascades that lead to neuronal cell death. Thus, modulation of Aβ toxicity is the hopef...
متن کاملAdrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress
Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...
متن کاملProtective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.
In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that z...
متن کاملProtective action of zinc against glutamate neurotoxicity in cultured retinal neurons.
PURPOSE To examine the effects of Zn2+ on glutamate-induced neurotoxicity in cultured retinal neurons. METHODS Primary cultures obtained from fetal rat retinas (16 to 19 days gestation) were used. The neurotoxic effects of excitatory amino acids were quantitatively assessed using the trypan blue exclusion method. RESULTS A brief exposure of retinal cultures to glutamate or N-methyl-D-aspart...
متن کاملMelissa officinalis aqueous extract ameliorates 6-hydroxydopamine-induced neurotoxicity in hemi-parkinsonian rat
ABSTRACT Background and Objective: Parkinson's disease (PD) is an age-related neurodegenerative disorder with massive loss of dopaminergic neurons in the substantia nigra pars compacta. L-Dihydroxyphenylalanine (L-DOPA) substitution is still the gold standard therapy for PD. However, there has been little information available on neuroprotective and regenerative therapies for PD. Due to the neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 36 4 شماره
صفحات -
تاریخ انتشار 2013