On the properties of generalized Fibonacci like polynomials
نویسندگان
چکیده
The Fibonacci polynomial has been generalized in many ways,some by preserving the initial conditions,and others by preserving the recurrence relation.In this article,we study new generalization {Mn}(x ), with initial conditions M0(x ) = 2 and M1(x ) = m (x ) + k (x ), which is generated by the recurrence relation Mn+1(x ) = k (x )Mn (x )+Mn−1(x ) for n ≥ 2, where k (x ), m (x ) are polynomials with real coefficients.We produce an extended Binet’s formula for {Mn}(x ) and,thereby identities such as Simpson’s,Catalan’s,d’Ocagene’s,etc.using matrix algebra.Moreover, we present sum formulas concerning this new generalization. MSC: 11B39 • 11B83
منابع مشابه
Generalized Bivariate Fibonacci-Like Polynomials and Some Identities
In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...
متن کاملHOMFLY Polynomials of Torus Links as Generalized Fibonacci Polynomials
The focus of this paper is to study the HOMFLY polynomial of (2, n)-torus link as a generalized Fibonacci polynomial. For this purpose, we first introduce a form of generalized Fibonacci and Lucas polynomials and provide their some fundamental properties. We define the HOMFLY polynomial of (2, n)-torus link with a way similar to our generalized Fibonacci polynomials and provide its fundamental ...
متن کاملElectronic transport through dsDNA based junction: a Fibonacci model
A numerical study is presented to investigate the electronic transport properties through a synthetic DNA molecule based on a quasiperiodic arrangement of its constituent nucleotides. Using a generalized Green's function technique, the electronic conduction through the poly(GACT)-poly(CTGA) DNA molecule in a metal/DNA/metal model structure has been studied. Making use of a renormalization schem...
متن کاملA Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$
In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.
متن کاملA generalization of the Fibonacci word fractal and the Fibonacci snowflake
In this paper we introduce a family of infinite words that generalize the Fibonacci word and we study their combinatorial properties. We associate with this family of words a family of curves that are like the Fibonacci word fractal and reveal some fractal features. Finally, we describe an infinite family of polyominoes stems from the generalized Fibonacci words and we study some of their geome...
متن کامل