RNA Interference Can Rebalance the Nitrogen Sink of Maize Seeds without Losing Hard Endosperm

نویسندگان

  • Yongrui Wu
  • Joachim Messing
چکیده

BACKGROUND One of the goals of plant breeding is to create crops to provide better nutrition for humans and livestock. Insufficient intake of protein is one of the most severe factors affecting the growth and development of children in developing countries. More than a century ago, in 1896, Hopkins initiated the well-known Illinois long-term selection for maize seed protein concentration, yielding four protein strains. By continuously accumulating QTLs, Illinois High Protein (IHP) reached a protein level 2.5-fold higher than normal maize, with the most increased fraction being the zein protein, which was shown to contain no lysine soon after the long-term selection program initiated. Therefore, IHP is of little value for feeding humans and monogastric animals. Although high-lysine lines of non-vitreous mutants were based on reduced zeins, the kernel soft texture precluded their practical use. Kernel hardness in opaque 2 (o2) could be restored in quality protein maize (QPM) with quantitative trait loci called o2 modifiers (Mo2s), but those did not increase total protein levels. METHODS The most predominant zeins are the 22- and 19-kDa α-zeins. To achieve a combination of desired traits, we used RNA interference (RNAi) against both α-zeins in IHP and evaluated the silencing effect by SDS-PAGE. Total protein, amino acid composition and kernel texture were analyzed. CONCLUSIONS The α-zeins were dramatically reduced, but the high total seed protein level remained unchanged by complementary increase of non-zein proteins. Moreover, the residual zein levels still allowed for a vitreous hard seed. Such dramatic rebalancing of the nitrogen sink could have a major impact in world food supply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteome balancing of the maize seed for higher nutritional value

Most flowering plant seeds are composed of the embryo and endosperm, which are surrounded by maternal tissue, in particular the seed coat. Whereas the embryo is the dormant progeny, the endosperm is a terminal organ for storage of sugars and amino acids in proteins and carbohydrates, respectively. Produced in maternal leaves during photosynthesis, sugars, and amino acids are transported to deve...

متن کامل

Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize.

Opaque2 (O2) is a transcription factor that plays important roles during maize endosperm development. Mutation of the O2 gene improves the nutritional value of maize seeds but also confers pleiotropic effects that result in reduced agronomic quality. To reveal the transcriptional regulatory framework of O2, we studied the transcriptome of o2 mutants using RNA sequencing (RNA-Seq) and determined...

متن کامل

The Silencing of Carotenoid β-Hydroxylases by RNA Interference in Different Maize Genetic Backgrounds Increases the β-Carotene Content of the Endosperm

Maize (Zea mays L.) is a staple food in many parts of Africa, but the endosperm generally contains low levels of the pro-vitamin A carotenoid β-carotene, leading to vitamin A deficiency disease in populations relying on cereal-based diets. However, maize endosperm does accumulate high levels of other carotenoids, including zeaxanthin, which is derived from β-carotene via two hydroxylation react...

متن کامل

A new opaque variant of maize by a single dominant RNA-interference-inducing transgene.

In maize, alpha-zeins, the main protein components of seed stores, are major determinants of nutritional imbalance when maize is used as the sole food source. Mutations like opaque-2 (o2) are used in breeding varieties with improved nutritional quality. However, o2 works in a recessive fashion by affecting the expression of a subset of 22-kD alpha-zeins, as well as additional endosperm gene fun...

متن کامل

γ-Zeins are essential for endosperm modification in quality protein maize

Zeins are essential for endosperm modification in quality protein maize" Essential amino acids like lysine and tryptophan are deficient in corn meal because of the abundance of zein storage proteins that lack these amino acids. A natural mutant, opaque 2 (o2) causes reduction of zeins, an increase of nonzein proteins, and as a consequence, a doubling of lysine levels. However, o2's soft inferio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012