A Geometric Approach to Leveraging
نویسنده
چکیده
AdaBoost is a popular and eeective leveraging procedure for improving the hypotheses generated by weak learning algorithms. AdaBoost and many other leveraging algorithms can be viewed as performing a constrained gradient descent over a potential function. At each iteration the distribution over the sample given to the weak learner is the direction of steepest descent. We introduce a new leveraging algorithm based on a natural potential function. For this potential function, the direction of steepest descent can have negative components. Therefore we provide two transformations for obtaining suitable distributions from these directions of steepest descent. The resulting algorithms have bounds that are incomparable to AdaBoost's, and their empirical performance is similar to AdaBoost's.
منابع مشابه
Improved Geometric Verification for Large Scale Landmark Image Collections
In this work, we address the issue of geometric verification, with a focus on modeling large-scale landmark image collections gathered from the internet. In particular, we show that we can compute and learn descriptive statistics pertaining to the image collection by leveraging information that arises as a by-product of the matching and verification stages. Our approach is based on the intuitio...
متن کاملA representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملMatching of Polygon Objects by Optimizing Geometric Criteria
Despite the semantic criteria, geometric criteria have different performances on polygon feature matching in different vector datasets. By using these criteria for measuring the similarity of two polygons in all matchings, the same results would not have been obtained. To achieve the best matching results, the determination of optimal geometric criteria for each dataset is considered necessary....
متن کاملSEIMCHA: a new semantic image CAPTCHA using geometric transformations
As protection of web applications are getting more and more important every day, CAPTCHAs are facing booming attention both by users and designers. Nowadays, it is well accepted that using visual concepts enhance security and usability of CAPTCHAs. There exist few major different ideas for designing image CAPTCHAs. Some methods apply a set of modifications such as rotations to the original imag...
متن کامل