Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons
نویسندگان
چکیده
Understanding the roles of disorder and metal/graphene interface on the electronic and transport properties of graphene-based systems is crucial for a consistent analysis of the data deriving from experimental measurements. The present work is devoted to the detailed study of graphene nanoribbon systems by means of self-consistent quantum transport calculations. The computational formalism is based on a coupled Schrödinger/Poisson approach that respects both chemistry and electrostatics, applied to pure/defected graphene nanoribbons (ideally or end-contacted by various fcc metals). We theoretically characterize the formation of metal-graphene junctions as well as the effects of backscattering due to the presence of vacancies and impurities. Our results evidence that disorder can infer significant alterations on the conduction process, giving rise to mobility gaps in the conductance distribution. Moreover, we show the importance of metal-graphene coupling that gives rise to doping-related phenomena and a degradation of conductance quantization characteristics.
منابع مشابه
Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملاثر تهیجایهای گسترده بر خواص گرمایی نانونوارهای آرمچیری گرافن
This paper shows a theoretical study of the thermal properties of armchair grapehen nanoribbons in the presence of extended vacancies. Each graphene nanoribbons formed by superlattices with a periodic geometric structure, different size and symmetry of vacancies. The phonon dispersion, specific heat and thermal conductivity properties are described by a force-constant model and also by Landauer...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملA Novel Method for Considering Interlayer Effects between Graphene Nanoribbons and Elastic Medium in Free Vibration Analysis
A complete investigation on the free vibration of bilayer graphene nanoribbons (BLGNRs) mod-eled as sandwich beams taking into account tensile-compressive and shear effects of van der Waals (vdWs) interactions between adjacent graphene nanoribbons (GNRs) as well as between GNRs and polymer matrix is performed in this research. In this modeling, nanoribbon layers play role of sandwich beam layer...
متن کاملQuantum transport modeling of defected graphene nanoribbons
We study backscattering phenomena during conduction for graphene nanoribbons of mm lengths, from single vacancy scatterers up to finite defect concentrations. Using ab initio calibrated Hamiltonian models we highlight the importance of confinement and geometry on the shaping of the local density of states around the defects that can lead to important alterations on the transport process, giving...
متن کامل