Inverses of Motzkin and Schröder Paths
نویسنده
چکیده
We suggest three applications for the inverses: For the inverse Motzkin matrix we look at Hankel determinants, and counting the paths inside a horizontal band, and for the inverse Schröder matrix we look at the paths inside the same band, but ending on the top side of the band.
منابع مشابه
A Bijection Between 3-Motzkin Paths and Schröder Paths With No Peak at Odd Height
A new bijection between 3-Motzkin paths and Schröder paths with no peak at odd height is presented, together with numerous consequences involving related combinatorial structures such as 2-Motzkin paths, ordinary Motzkin paths and Dyck paths.
متن کاملFrom (2, 3)-Motzkin Paths to Schröder Paths
In this paper, we provide a bijection between the set of restricted (2, 3)-Motzkin paths of length n and the set of Schröder paths of semilength n. Furthermore, we give a one-to-one correspondence between the set of (2, 3)-Motzkin paths of length n and the set of little Schröder paths of semilength n + 1. By applying the bijections, we get the enumerations of Schröder paths according to the sta...
متن کامل# a 49 Integers 12 ( 2012 ) Inverses of Motzkin and Schröder Paths
The connection between weighted counts of Motzkin paths and moments of orthogonal polynomials is well known. We look at the inverse generating function of Motzkin paths with weighted horizontal steps, and relate it to Chebyshev polynomials of the second kind. The inverse can be used to express the number of paths ending at a certain height in terms of those ending at height 0. Paths of a more g...
متن کاملSome order-theoretic properties of the Motzkin and Schröder families∗
Our starting point is one of the main results of [BBFP], which we are going to recall in the next lines. Denote by Dn, NC(n) and Sn(312) the sets of Dyck paths of length 2n, noncrossing partitions of [1, n] and 312-avoiding permutations of [1, n], respectively, where [1, n] is the set of positive integers less than or equal to n. For our purposes, the following notations will be particularly us...
متن کاملMotzkin Paths, Motzkin Polynomials and Recurrence Relations
We consider the Motzkin paths which are simple combinatorial objects appearing in many contexts. They are counted by the Motzkin numbers, related to the well known Catalan numbers. Associated with the Motzkin paths, we introduce the Motzkin polynomial, which is a multi-variable polynomial “counting” all Motzkin paths of a certain type. Motzkin polynomials (also called Jacobi-Rogers polynomials)...
متن کامل