Argument Estimate for Starlike Functions of Reciprocal Order
نویسندگان
چکیده
Argument estimates for certain analytic functions associated with starlike functions of reciprocal order are obtained and special cases of the main results are indicated.
منابع مشابه
Sufficient Conditions for a New Class of Polynomial Analytic Functions of Reciprocal Order alpha
In this paper, we consider a new class of analytic functions in the unit disk using polynomials of order alpha. We give some sufficient conditions for functions belonging to this class.
متن کاملCoefficient Bounds for Some Families of Starlike and Convex Functions of Reciprocal Order
The aim of the present paper is to investigate coefficient estimates, Fekete-Szegő inequality, and upper bound of third Hankel determinant for some families of starlike and convex functions of reciprocal order.
متن کاملStarlike Functions of order α With Respect To 2(j,k)-Symmetric Conjugate Points
In this paper, we introduced and investigated starlike and convex functions of order α with respect to 2(j,k)-symmetric conjugate points and coefficient inequality for function belonging to these classes are provided . Also we obtain some convolution condition for functions belonging to this class.
متن کاملSome properties and results for certain subclasses of starlike and convex functions
In the present paper, we introduce and investigate some properties of two subclasses $ Lambda_{n}( lambda , beta ) $ and $ Lambda_{n}^{+}( lambda , beta ) $; meromorphic and starlike functions of order $ beta $. In particular, several inclusion relations, coefficient estimates, distortion theorems and covering theorems are proven here for each of these function classes.
متن کاملThe norm of pre-Schwarzian derivatives on bi-univalent functions of order $alpha$
In the present investigation, we give the best estimates for the norm of the pre-Schwarzian derivative $ T_{f}(z)=dfrac{f^{''}(z)}{f^{'}(z)} $ for bi-starlike functions and a new subclass of bi-univalent functions of order $ alpha $, where $Vert T_{f} Vert= sup_{|z|
متن کامل