The Zero Surface Tension Limit of Two-Dimensional Water Waves

نویسندگان

  • DAVID M. AMBROSE
  • NADER MASMOUDI
چکیده

We consider two-dimensional water waves of infinite depth, periodic in the horizontal direction. It has been proven by Wu (in the slightly different nonperiodic setting) that solutions to this initial value problem exist in the absence of surface tension. Recently Ambrose has proven that solutions exist when surface tension is taken into account. In this paper, we provide a shorter, more elementary proof of existence of solutions to the water wave initial value problem both with and without surface tension. Our proof requires estimating the growth of geometric quantities using a renormalized arc length parametrization of the free surface and using physical quantities related to the tangential velocity of the free surface. Using this formulation, we find that as surface tension goes to 0, the water wave without surface tension is the limit of the water wave with surface tension. Far from being a simple adaptation of previous works, our method requires a very original choice of variables; these variables turn out to be physical and well adapted to both cases. c © 2005 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Zero Surface Tension Limit of Two-dimensional Interfacial Darcy Flow

We perform energy estimates for a sharp-interface model of two-dimensional, twophase Darcy flow with surface tension. A proof of well-posedness of the initial value problem follows from these estimates. In general, the time of existence of these solutions will go to zero as the surface tension parameter vanishes. We then make two additional estimates, in the case that a stability condition is s...

متن کامل

تحلیل عددی جریان سیال حول مقطع پروانه نیمه مغروق با پروفیل لبه انتهایی خطی در اعداد وبر متفاوت

In this study, two-dimensional flow analysis around cross-section of the surface piercing propeller with a linear profile trailing edge is studied in different Weber numbers. Due to collision of the two-dimensional cross section with surface water, aeration zone is created on the suction side that is heavily impact on the results. The ventilation pattern is a function of the geometrical paramet...

متن کامل

نگاشت همدیس در طرح‌های انگشتی سافمن- تیلور

 We studied the growth of viscous fingers as a Laplacian growth by conformal mapping. Viscous fingers grow due to Saffman-Taylor instability in the interface between two fluids, when a less viscous fluid pushes a more viscous fluid. As there was an interest in the rectangular Hele-Shaw cell, we solved the Laplacian equation with appropriate boundary conditions by means of conformal mapping tech...

متن کامل

Dispersion Relations for Periodic Water Waves with Surface Tension and Discontinuous Vorticity

We derive the dispersion relation for water waves with surface tension and having a piecewise constant vorticity distribution. More precisely, we consider here two scenarios; the first one is that of a flow with constant non-zero vorticity adjacent to the flat bed while above this layer of vorticity we assume the flow to be irrotational. The second type of flow has a layer of non-vanishing vort...

متن کامل

Gravity-driven film flow down an inclined wall with three-dimensional corrugations

The gravity-driven flow of a liquid film down an inclined wall with three-dimensional doubly periodic corrugations is investigated in the limit of vanishing Reynolds number. The film surface may exhibit constant or variable surface tension due to an insoluble surfactant. A perturbation analysis for small-amplitude corrugations is performed, wherein the wall geometry is expressed as a Fourier se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005