Light-Addressed Electrodeposition of Enzyme-Entrapped Chitosan Membranes for Multiplexed Enzyme-Based Bioassays Using a Digital Micromirror Device
نویسندگان
چکیده
This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR).
منابع مشابه
Light-Addressable Electrodeposition of Magnetically-Guided Cells Encapsulated in Alginate Hydrogels for Three-Dimensional Cell Patterning
This paper describes a light-addressable electrolytic system used to perform an electrodeposition of magnetically-guided cells encapsulated in alginate hydrogels using a digital micromirror device (DMD) for three-dimensional cell patterning. In this system, the magnetically-labeled cells were first manipulated into a specific arrangement by changing the orientation of the magnetic field, and th...
متن کاملImmobilization of glucose oxidase on chitosan-based porous composite membranes and their potential use in biosensors.
The glucose oxidase (GOx) enzyme was immobilized on chitosan-based porous composite membranes using a covalent bond between GOx and the chitosan membrane. The chitosan-based porous membranes were prepared by the combination of the evaporation- and non-solvent-induced phase separation methods. To increase the membrane conductivity, carbon nanotubes (CNTs) were added to the chitosan solution. The...
متن کاملProgrammable assembly of a metabolic pathway enzyme in a pre-packaged reusable bioMEMS device.
We report a biofunctionalization strategy for the assembly of catalytically active enzymes within a completely packaged bioMEMS device, through the programmed generation of electrical signals at spatially and temporally defined sites. The enzyme of a bacterial metabolic pathway, S-adenosylhomocysteine nucleosidase (Pfs), is genetically fused with a pentatyrosine "pro-tag" at its C-terminus. Sig...
متن کاملEffects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase.
The influences of the pH, tripolyphosphate (TPP) concentration, and ionic strength of the gelling medium on the entrapment efficiency, release, and activity of lipase in chitosan hydrogel beads were studied. A solution of Candida rugosa lipase was prepared in a 1.5% w/v chitosan and 1% (v/v) acetic acid medium, and dropped into a TPP solution. Release of lipase in pH 7.2 Tris buffer was monitor...
متن کاملOptimization of biocatalytic synthesis of Chitosan Ester using response surface methodology
Esterification of chitosan with adipic acid catalyzed by immobilized Candida antarctica lipase B was carried out in this study. Response surface methodology (RSM) based on a four-factor- five-level small central composite design (SCCD) was employed to model and analyze the reaction. A total of 21 experiments representing different combinations of the four reaction parameters including ch...
متن کامل