Neuroelectric Current Localization from Combined EEG/MEG Data

نویسنده

  • Francesca Pitolli
چکیده

EEG/MEG devices record external signals which are generated by the neuronal electric activity of the brain. The localization of the neuronal sources requires the solution of the neuroelectromagnetic inverse problem which is highly ill-posed and ill-conditioned. We provide an iterative thresholding algorithm for recovering neuroeletric current densities within the brain through combined EEG/MEG data. We use a joint sparsity constraint to promote solutions localized in small brain area, assuming that the vector components of the current densities possess the same sparse spatial pattern. At each iteration step, the EEG/MEG forward problem is numerically solved by a Galerkin boundary element method. Some numerical experiments on the localization of current dipole sources are also given. The numerical results show that joint sparsity constraints outperform classical regularization methods based on quadratic constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex.

To exploit the high (millisecond) temporal resolution of magnetoencephalography (MEG) and electroencephalography (EEG) for measuring neuronal dynamics within well-defined brain regions, it is important to quantitatively assess their localizing ability. Previous modeling studies and empirical data suggest that a combination of MEG and EEG signals should yield the most accurate localization, due ...

متن کامل

A study of dipole localization accuracy for MEG and EEG using a human skull phantom.

OBJECTIVE To investigate the accuracy of forward and inverse techniques for EEG and MEG dipole localization. DESIGN AND METHODS A human skull phantom was constructed with brain, skull and scalp layers and realistic relative conductivities. Thirty two independent current dipoles were distributed within the 'brain' region and EEG and MEG data collected separately for each dipole. The true dipol...

متن کامل

Monte Carlo simulation studies of EEG and MEG localization accuracy.

Both electroencephalography (EEG) and magnetoencephalography (MEG) are currently used to localize brain activity. The accuracy of source localization depends on numerous factors, including the specific inverse approach and source model, fundamental differences in EEG and MEG data, and the accuracy of the volume conductor model of the head (i.e., the forward model). Using Monte Carlo simulations...

متن کامل

Error bounds for EEG and MEG dipole source localization.

General formulas are presented for computing a lower bound on localization and moment error for electroencephalographic (EEG) or magnetoencephalographic (MEG) current source dipole models with arbitrary sensor array geometry. Specific EEG and MEG formulas are presented for multiple dipoles in a head model with 4 spherical shells. Localization error bounds are presented for both EEG and MEG for ...

متن کامل

Conductivity Estimation with Eeg/meg Brain Source Localization in a Finite Element Head Model

Brain source localization with EEG and MEG modalities provides a useful means of identifying and localizing bioelectric source in the brain. Source localization has been used as an important tool in neuroscience and in clinical applications. Due to modern imaging technology, one can construct a subject specific volume conductor model from a set of MRI or CT images that can improve the accuracy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010