Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning

نویسندگان

  • Ben Steventon
  • Roberto Mayor
  • Andrea Streit
چکیده

In the vertebrate head, central and peripheral components of the sensory nervous system have different embryonic origins, the neural plate and sensory placodes. This raises the question of how they develop in register to form functional sense organs and sensory circuits. Here we show that mutual repression between the homeobox transcription factors Gbx2 and Otx2 patterns the placode territory by influencing regional identity and by segregating inner ear and trigeminal progenitors. Activation of Otx2 targets is necessary for anterior olfactory, lens and trigeminal character, while Gbx2 function is required for the formation of the posterior otic placode. Thus, like in the neural plate antagonistic interaction between Otx2 and Gbx2 establishes positional information thus providing a general mechanism for rostro-caudal patterning of the ectoderm. Our findings support the idea that the Otx/Gbx boundary has an ancient evolutionary origin to which different modules were recruited to specify cells of different fates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directional cell movements downstream of Gbx2 and Otx2 control the assembly of sensory placodes

Cranial placodes contribute to sensory structures including the inner ear, the lens and olfactory epithelium and the neurons of the cranial sensory ganglia. At neurula stages, placode precursors are interspersed in the ectoderm surrounding the anterior neural plate before segregating into distinct placodes by as yet unknown mechanisms. Here, we perform live imaging to follow placode progenitors...

متن کامل

Gbx2 interacts with Otx2 and patterns the anterior–posterior axis during gastrulation in Xenopus

Anterior-posterior patterning of the embryo requires the activity of multiple homeobox genes among them Hox, caudal (Cdx, Xcad) and Otx2. During early gastrulation, Otx2 and Xcad2 establish a cross-regulatory network, which is an early event in the anterior-posterior patterning of the embryo. As gastrulation proceeds and the embryo elongates, a new domain forms, which expresses neither, Otx2 no...

متن کامل

Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2.

The anterior neural ridge (ANR), and the isthmic organiser (IsO) represent two signalling centres possessing organising properties necessary for forebrain (ANR) as well as midbrain and rostral hindbrain (IsO) development. An important mediator of ANR and IsO organising property is the signalling molecule FGF8. Previous work has indicated that correct positioning of the IsO and Fgf8 expression i...

متن کامل

EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region.

Fgf8, which is expressed at the embryonic mid/hindbrain junction, is required for and sufficient to induce the formation of midbrain and cerebellar structures. To address through what genetic pathways FGF8 acts, we examined the epistatic relationships of mid/hindbrain genes that respond to FGF8, using a novel mouse brain explant culture system. We found that En2 and Gbx2 are the first genes to ...

متن کامل

Fgf8 and Gbx2 induction concomitant with Otx2 repression is correlated with midbrain-hindbrain fate of caudal prosencephalon.

Chick/quail transplantation experiments were performed to analyse possible factors involved in the regionalisation of the midbrain-hindbrain domain. The caudal prosomeres, expressing Otx2, were transplanted at stage HH10 into rostrocaudal levels of the midbrain-hindbrain domain, either straddling the intra-metencephalic constriction (type 1 grafts), or at rostral and medial levels of pro-rhombo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 367-540  شماره 

صفحات  -

تاریخ انتشار 2012