Strong Coupling of Shoot Assimilation and Soil Respiration during Drought and Recovery Periods in Beech As Indicated by Natural Abundance δ13C Measurements
نویسندگان
چکیده
Drought down-regulates above- and belowground carbon fluxes, however, the resilience of trees to drought will also depend on the speed and magnitude of recovery of these above- and belowground fluxes after re-wetting. Carbon isotope composition of above- and belowground carbon fluxes at natural abundance provides a methodological approach to study the coupling between photosynthesis and soil respiration (SR) under conditions (such as drought) that influence photosynthetic carbon isotope discrimination. In turn, the direct supply of root respiration with recent photoassimilates will impact on the carbon isotope composition of soil-respired CO2. We independently measured shoot and soil CO2 fluxes of beech saplings (Fagus sylvatica L.) and their respective δ13C continuously with laser spectroscopy at natural abundance. We quantified the speed of recovery of drought stressed trees after re-watering and traced photosynthetic carbon isotope signal in the carbon isotope composition of soil-respired CO2. Stomatal conductance responded strongly to the moderate drought (-65%), induced by reduced soil moisture content as well as increased vapor pressure deficit. Simultaneously, carbon isotope discrimination decreased by 8‰, which in turn caused a significant increase in δ13C of recent metabolites (1.5-2.5‰) and in δ13C of SR (1-1.5‰). Generally, shoot and soil CO2 fluxes and their δ13C were in alignment during drought and subsequent stress release, clearly demonstrating a permanent dependence of root respiration on recently fixed photoassimilates, rather than on older reserves. After re-watering, the drought signal persisted longer in δ13C of the water soluble fraction that integrates multiple metabolites (soluble sugars, amino acids, organic acids) than in the neutral fraction which represents most recently assimilated sugars or in the δ13C of SR. Nevertheless, full recovery of all aboveground physiological variables was reached within 4 days - and within 7 days for SR - indicating high resilience of (young) beech against moderate drought.
منابع مشابه
Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery.
Drought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into ...
متن کاملInvestigating Growth of Frankenia thymifolia as a Cover Plant During Drought Stress in Different Growth Media and Irrigation Periods
There are some plants can replaced grass among cover plants. Cover plants are obvious solution of problem in these places that the most important plant is Frankinia and Lisimakia etc. The aim of this study is to use organic wastes, biological fertilizers and moisture super absorbents in the growth media of Frankinia to increase water holding capacity, delay in permane...
متن کاملOn the influence of provenance to soil quality enhanced stress reaction of young beech trees to summer drought
Climate projections propose that drought stress will become challenging for establishing trees. The magnitude of stress is dependent on tree species, provenance, and most likely also highly influenced by soil quality. European Beech (Fagus sylvatica) is of major ecological and economical importance in Central European forests. The species has an especially wide physiological and ecological ampl...
متن کاملDrought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event
Drought periods are projected to become more severe and more frequent in many European regions. While effects of single strong droughts on plant and microbial carbon (C) dynamics have been studied in some detail, impacts of recurrent drought events are still little understood.We tested whether the legacy of extreme experimental drought affects responses of plant and microbial C and nitrogen (N)...
متن کاملResilient Leaf Physiological Response of European Beech (Fagus sylvatica L.) to Summer Drought and Drought Release
Drought is a major environmental constraint to trees, causing severe stress and thus adversely affecting their functional integrity. European beech (Fagus sylvatica L.) is a key species in mesic forests that is commonly expected to suffer in a future climate with more intense and frequent droughts. Here, we assessed the seasonal response of leaf physiological characteristics of beech saplings t...
متن کامل