Tectonic modeling of Konya-Beysehir Region (Turkey) using cellular neural networks
نویسندگان
چکیده
In this paper, to separate regional-residual anomaly maps and to detect borders of buried geological bodies, we applied the Cellular Neural Network (CNN) approach to gravity and magnetic anomaly maps. CNN is a stochastic image processing technique, based optimization of templates, which imply relationships of neighborhood pixels in 2-Dimensional (2D) potential anomalies. Here, CNN performance in geophysics, tested by various synthetic examples and the results are compared to classical methods such as boundary analysis and second vertical derivatives. After we obtained satisfactory results in synthetic models, we applied CNN to Bouguer anomaly map of Konya-Beysehir Region, which has complex tectonic structure with various fault combinations. We evaluated CNN outputs and 2D/3D models, which are constructed using forward and inversion methods. Then we presented a new tectonic structure of Konya-Beysehir Region. We have denoted (F1, F2, ..., F7) and (Konya1, Konya2) faults according to our evaluations of CNN outputs. Thus, we have concluded that CNN is a compromising stochastic image processing technique in geophysics. Mailing address: Dr. Ali Muhittin Albora, Geophysical Department, Engineering Faculty, Istanbul University, 34320 Avcilar, Istanbul, Turkey; e-mail: [email protected]
منابع مشابه
Modeling of Removal of Chromium (VI) from Aqueous Solutions Using Artificial Neural Network
There is a need for knowledge, experience, laboratory, materials, and time to conduct chemical experiments. The results depend on the process and are also quite costly. For economic and rapid results, chemical processes can be modeled by utilizing data obtained in the past. In this paper, an artificial neural network model is proposed for predicting the removal efficiency of...
متن کاملA Comparison of Dynamic Postural Stability Between Asymptomatic Controls and Male Patients One Year After ACL Reconstruction (Pilot Study)
(http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article without the permission of the Author(s). For reprints and permission queries, please visit SAGE’s Web site at http://www.sagepub.com/jo...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملRelationship Between Functional Knee Joint Position Sense and Functional Performance Scores Following Anterior Cruciate Ligament Reconstruction (Pilot Study)
(http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article without the permission of the Author(s). For reprints and permission queries, please visit SAGE’s Web site at http://www.sagepub.com/jo...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کامل