Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits.
نویسندگان
چکیده
We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light.
منابع مشابه
Coupling Nitrogen-Vacancy Centers in Diamond in Superconducting Flux Qubits
The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.
متن کاملStrong coupling of a spin ensemble to a superconducting resonator.
We report the realization of a quantum circuit in which an ensemble of electronic spins is coupled to a frequency tunable superconducting resonator. The spins are nitrogen-vacancy centers in a diamond crystal. The achievement of strong coupling is manifested by the appearance of a vacuum Rabi splitting in the transmission spectrum of the resonator when its frequency is tuned through the nitroge...
متن کاملHybrid quantum circuit with a superconducting qubit coupled to a spin ensemble.
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare a superposition o...
متن کامل“Hybrid quantum systems: Coupling diamond color centers to superconducting cavities”
Hybrid quantum systems based on spin-ensembles coupled to superconducting microwave cavities are promising candidates for robust experiments in cavity quantum electrodynamics (QED) and for future technologies employing quantum mechanical effects. In particular the electron spins hosted by nitrogen-vacancy centers in diamond. The main source of decoherence in this systems is inhomogeneous dipola...
متن کاملQuantum interference of single photons from remote nitrogen-vacancy centers in diamond.
We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficiency. Quantum interference is verified by measuring a value of the second-order cross-correlation function g((2))(0)=0.35±0.04<0.5. In addition, optical tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 21 شماره
صفحات -
تاریخ انتشار 2010