Role of neuron-glial junctional domain proteins in the maintenance and termination of neuronal migration across the embryonic cerebral wall.
نویسندگان
چکیده
To identify glial membrane proteins that contribute to the process of neuronal migration in the developing brain, we developed a polyclonal antiserum (D4) and a monoclonal antibody (NJPA1: neuron-glial junctional polypeptide antibody) that recognize membrane proteins localized to the plasmalemmal junction between migrating neurons and adjacent radial glial fibers (Cameron and Rakic, 1994). Here, we show that in the developing cerebral cortex, immunoreactivity for these junctional polypeptides is present throughout the neuronal migratory pathway but becomes minimal or absent where radial glial cell processes enter the marginal zone region, the barrier at which newly arrived neurons normally stop their migration and detach from their glial fiber substrate. We thus tested, using imprints of embryonic cerebral wall and slice preparations, whether the junctional membrane proteins detected by our antibodies contribute to the regulation of neuronal migration in the cerebral cortex. The rate of neuronal migration on glial cell substrates was reduced significantly in the presence of D4 or NJPA1 antibodies. Antibody exposure typically led to the withdrawal of leading processes, changes in microtubular organization and, in some instances, to detachment of neurons from their glial cell substrates. These results suggest that the polypeptides recognized by the D4 and NJPA1 antibodies are essential for the maintenance of normal neuronal migration. Dismantling of neuron-glial cell junctional domains formed by these membrane proteins may underlie neuronal cell detachment from glial migratory substrates at the interface between cortical plate and marginal zone in the developing cerebral wall.
منابع مشابه
Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex.
During neuronal migration to the developing cerebral cortex, neurons regulate radial glial cell function and radial glial cells, in turn, support neuronal cell migration and differentiation. To study how migrating neurons and radial glial cells influence each others' function in the developing cerebral cortex, we examined the role of glial growth factor (a soluble form of neuregulin), in neuron...
متن کاملBDNF/MAPK/ERK-induced BMP7 expression in the developing cerebral cortex induces premature radial glia differentiation and impairs neuronal migration.
During development of the mammalian nervous system, a combination of genetic and environmental factors governs the sequential generation of neurons and glia and the initial establishment of the neural circuitry. Here, we demonstrate that brain-derived neurotrophic factor (BDNF), one of those local acting factors, induces Bone Morphogenetic Protein 7 (BMP7) expression in embryonic neurons by act...
متن کاملEmpowerment of Balb/C mouse neuron and glial cells in steroidogenesis after activation of the SHH signaling pathway and co-treatment with pregnenolone
Background: Steroid production has been reported in the asexual tissues of the nervous system. Stimulants are in the normal activity, function and function of the nervous system. Identifying the conduction pathways involved in glucocorticoids and enabling brain parenchymal cells can offset the balance in the active nervous system at old ages when the body is depleted. Therefore, in this stu...
متن کاملSPARC-like 1 Regulates the Terminal Phase of Radial Glia-Guided Migration in the Cerebral Cortex
Differential adhesion between migrating neurons and transient radial glial fibers enables the deployment of neurons into appropriate layers in the developing cerebral cortex. The identity of radial glial signals that regulate the termination of migration remains unclear. Here, we identified a radial glial surface antigen, SPARC (secreted protein acidic and rich in cysteine)-like 1, distributed ...
متن کاملReinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex.
Radial glial cells play a critical role in the construction of mammalian brain by functioning as a source of new neurons and by providing a scaffold for radial migration of new neurons to their target locations. Radial glia transform into astrocytes at the end of embryonic development. Strategies to promote functional recovery in the injured adult brain depend on the generation of new neurons a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 7 شماره
صفحات -
تاریخ انتشار 1996