Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses

نویسندگان

  • Ahmed O. Hassan
  • Omar Amen
  • Ekramy E. Sayedahmed
  • Sai V. Vemula
  • Samuel Amoah
  • Ian York
  • Shivaprakash Gangappa
  • Suryaprakash Sambhara
  • Suresh K. Mittal
چکیده

The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadly Protective Adenovirus-Based Multivalent Vaccines against Highly Pathogenic Avian Influenza Viruses for Pandemic Preparedness

Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines a...

متن کامل

A Serological Survey of Antibodies to H5, H7 and H9 Avian Influenza Viruses amongst the Duck-Related Workers in Beijing, China

The continued spread of highly pathogenic avian influenza (HPAI) viruses of H5 and H7 subtypes and low pathogenic avian influenza (LPAI) viruses of H5, H7 and H9 subtypes in birds and the subsequent infections in humans pose an ongoing pandemic threat. It has been proposed that poultry workers are at higher risk of exposure to HPAI or LPAI viruses and subsequently infection due to their repeate...

متن کامل

Serological evidence of H7, H5 and H9 avian influenza virus co-infection among herons in a city park in Jiangxi, China

Extensive surveillance of influenza A viruses in different avian species is critical for understanding its transmission. Here, a breeding colony of Little Egrets and Black-crowned Night Herons was monitored both serologically and virologically in a city park of Jiangxi in 2009. A portion of herons had antibodies against H7 (52%), H5 (55%) and H9 (6%) subtype avian influenza virus (AIV) in egg y...

متن کامل

Development of vaccine strains of H5 and H7 influenza viruses.

To establish vaccine strains of H5 and H7 influenza viruses, A/duck/Hokkaido/Vac-1/04 (H5N1) [Vac-1/04 (H5N1)], A/duck/Hokkaido/Vac-3/07 (H5N1) [Vac-3/07 (H5N1)], and A/duck/Hokkaido/ Vac-2/04 (H7N7) [Vac-2/04 (H7N7)] were generated from non-pathogenic avian influenza viruses isolated from migratory ducks. Vac-1/04 (H5N1) and Vac-3/07 (H5N1) were generated by genetic reassortment between H5N2 o...

متن کامل

Multiplex Reverse Transcriptase-PCR Assay for Typing and Subtyping of Influenza A (H5 & H9) Virus in Iran

Avian influenza virus (AIV) infection is a major cause of bird or human mortality and morbidity, therefore the rapid identification of the virus is of important clinical and epidemiological implication. Methods: A multiplex Reverse Transcriptase PCR (RT-PCR) was optimized for the detection of influenza A virus and the H5 and H9 subtypes. The influenza type A specific primers were directed to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017