Sparseness and Expansion in Sensory Representations
نویسندگان
چکیده
In several sensory pathways, input stimuli project to sparsely active downstream populations that have more neurons than incoming axons. Here, we address the computational benefits of expansion and sparseness for clustered inputs, where different clusters represent behaviorally distinct stimuli and intracluster variability represents sensory or neuronal noise. Through analytical calculations and numerical simulations, we show that expansion implemented by feed-forward random synaptic weights amplifies variability in the incoming stimuli, and this noise enhancement increases with sparseness of the expanded representation. In addition, the low dimensionality of the input layer generates overlaps between the induced representations of different stimuli, limiting the benefit of expansion. Highly sparse expansive representations obtained through synapses that encode the clustered structure of the input reduce both intrastimulus variability and the excess overlaps between stimuli, enhancing the ability of downstream neurons to perform classification and recognition tasks. Implications for olfactory, cerebellar, and visual processing are discussed.
منابع مشابه
Highly Sparse Representations from Dictionaries Are Unique and Independent of the Sparseness Measure
The purpose of this paper is to study sparse representations of signals from a general dictionary in a Banach space. For so-called localized frames in Hilbert spaces, the canonical frame coefficients are shown to provide a near sparsest expansion for several sparseness measures. However, for frames which are not localized, this no longer holds true and sparse representations may depend strongly...
متن کاملHighly sparse representations from dictionaries are unique and independent of the sparseness measure by
The purpose of this paper is to study sparse representations of signals from a general dictionary in a Banach space. For so-called localized frames in Hilbert spaces, the canonical frame coefficients are shown to provide a near sparsest expansion for several sparseness measures. However, for frames which are not localized, this no longer holds true and sparse representations may depend strongly...
متن کاملNonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper.
Sparse coding schemes are employed by many sensory systems and implement efficient coding principles. Yet, the computations yielding sparse representations are often only partly understood. The early auditory system of the grasshopper produces a temporally and population-sparse representation of natural communication signals. To reveal the computations generating such a code, we estimated 1D an...
متن کاملDense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on re...
متن کاملMeasuring sparseness in the brain: comment on Bowers (2009).
Bowers challenged the common view in favor of distributed representations in psychological modeling and the main arguments given against localist and grandmother cell coding schemes. He revisited the results of several single-cell studies, arguing that they do not support distributed representations. We praise the contribution of Bowers (2009) for joining evidence from psychological modeling an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 83 شماره
صفحات -
تاریخ انتشار 2014