On timelike surfaces in Lorentzian manifolds

نویسندگان

  • Wolfgang Hasse
  • Volker Perlick
  • VOLKER PERLICK
چکیده

We discuss the geometry of timelike surfaces (two-dimensional submanifolds) in a Lorentzian manifold and its interpretation in terms of general relativity. A classification of such surfaces is presented which distinguishes four cases of special algebraic properties of the second fundamental form from the generic case. In the physical interpretation a timelike surface Σ can be viewed as the worldsheet of a “track”, and timelike curves in Σ can be viewed as the worldlines of observers who are bound to the track, like someone sitting in a roller-coaster car. With this interpretation, our classification turns out to be closely related to (i) the visual appearance of the track, (ii) gyroscopic transport along the track, and (iii) inertial forces perpendicular to the track. We illustrate our general results with timelike surfaces in the Kerr-Newman spacetime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes

Some results related to the causality of compact Lorentzian manifolds are proven: (1) any compact Lorentzian manifold which admits a timelike conformal vector field is totally vicious, and (2) a compact Lorentzian manifold covered regularly by a globally hyperbolic spacetime admits a timelike closed geodesic, if some natural topological assumptions (fulfilled, for example, if one of the conjuga...

متن کامل

Periodic Geodesics and Geometry of Compact Lorentzian Manifolds with a Killing Vector Field

We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is never vanishing, then there are at least two distinct periodic geodesics; as ...

متن کامل

On totally umbilic submanifolds of semi-Riemannian manifolds

The notion of being totally umbilic is considered for non-degenerate and degenerate submanifolds of semi-Riemanian manifolds. After some remarks on the general case, timelike and lightlike totally umbilic submanifolds of Lorentzian manifolds are discussed, along with their physical interpretation in view of general relativity. In particular, the mathematical notion of totally umbilic submanifol...

متن کامل

On the Isometry Group and the Geometric Structure of Compact Stationary Lorentzian Manifolds

We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (resp., lightlike) manifold.

متن کامل

Periodic Geodesics and Geometry of Compact Stationary Lorentzian Manifolds

We prove the existence of at least two timelike non self-intersecting periodic geodesics in compact stationary Lorentzian manifolds and we discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a stationary Lorentzian metric if and only if M admits a smooth circle action without fixed points.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008