Evidence for a dynamic role of the linker histone variant H1x during retinoic acid-induced differentiation of NT2 cells.

نویسندگان

  • Maryam Shahhoseini
  • Raha Favaedi
  • Hossein Baharvand
  • Vikram Sharma
  • Hendrik G Stunnenberg
چکیده

The dynamics of chromatin structure are tightly regulated by multiple epigenetic mechanisms such as histone modifications and incorporation of histone variants. In the current work, differentiation of an embryonal carcinoma cell line, NT2, was induced by retinoic acid, and total histone proteins were compared throughout this process. The results showed a significant change in expression level of a variant of H1 histone named H1x. Chromatin immunoprecipitation coupled with real-time PCR analysis demonstrated a preferential incorporation of this protein in the regulatory region of Nanog, a marker gene of stemness that is significantly suppressed in differentiated cells. This finding reveals a dynamic role of H1x in differentiation, and implies a repressive role for this histone variant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation

Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...

متن کامل

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

P-217: Expression Analysis of The Histone Variant H2A.Z in Endometrium Tissue during The Menstrual Cycle

Background: The human endometrium undergoes cyclical changes including proliferation, differentiation, tissue breakdown and shedding (menstruation) throughout a woman’s reproductive life. The postovulatory rise in ovarian progestrone induces profound remodeling in chromatin structure of cells, and consequently differentiation of estradiol-primed endometrium. This change is crucial for embryo im...

متن کامل

Histone H1 Variants Are Differentially Expressed and Incorporated into Chromatin during Differentiation and Reprogramming to Pluripotency Running Title: H1 Variant Content in Pluripotent and Differentiated Cells

There are seven linker histone variants in human somatic cells (H1.0 to H1.5, and H1X), their prevalence varying as a function of cell type and differentiation stage, suggesting that the different variants may have distinct roles. We have revisited this notion by using new methodologies to study pluripotency and differentiation, including the in vitro differentiation of human embryonic stem (ES...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 584 22  شماره 

صفحات  -

تاریخ انتشار 2010