Sequential Entry of Components of Gene Expression Machinery into Daughter Nuclei□V
نویسندگان
چکیده
In eukaryotic cells, RNA polymerase II (RNA pol II) transcription and pre-mRNA processing are coordinated events. We have addressed how individual components of the transcription and pre-mRNA processing machinery are organized during mitosis and subsequently recruited into the newly formed daughter nuclei. Interestingly, localization studies of numerous RNA pol II transcription and pre-mRNA processing factors revealed a nonrandom and sequential entry of these factors into daughter nuclei after nuclear envelope/lamina formation. The initiation competent form of RNA pol II and general transcription factors appeared in the daughter nuclei simultaneously, but prior to pre-mRNA processing factors, whereas the elongation competent form of RNA pol II was detected even later. The differential entry of these factors rules out the possibility that they are transported as a unitary complex. Telophase nuclei were competent for transcription and pre-mRNA splicing concomitant with the initial entry of the respective factors. In addition, our results revealed a low turnover rate of transcription and pre-mRNA splicing factors during mitosis. We provide evidence to support a model in which the entry of the RNA pol II gene expression machinery into newly forming daughter nuclei is a staged and ordered process.
منابع مشابه
Expression of Recombinant Protein B Subunit Pili from Vibrio Cholera
Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...
متن کاملHypophosphorylated SR splicing factors transiently localize around active nucleolar organizing regions in telophase daughter nuclei
Upon completion of mitosis, daughter nuclei assemble all of the organelles necessary for the implementation of nuclear functions. We found that upon entry into daughter nuclei, snRNPs and SR proteins do not immediately colocalize in nuclear speckles. SR proteins accumulated in patches around active nucleolar organizing regions (NORs) that we refer to as NOR-associated patches (NAPs), whereas sn...
متن کاملCloning and characterization of MAP2191 gene, a mammalian cell entry antigen of Mycobacterium avium subspecies paratuberculosis
The aim of this study is to identify, clone and express a Mycobacterium avium subsp. paratuberculosis specific immunogenic antigen candidate, in order to develop better reagents for diagnosis and vaccines for the protection of the host. Therefore, MAP2191 gene (a member of MAPmce5 operon) from MAP, was isolated and characterized by Bioinformatics tools and <e...
متن کاملSequential Counteracting Kinases Restrict an Asymmetric Gene Expression Program to early G1
Gene expression is restricted to specific times in cell division and differentiation through close control of both activation and inactivation of transcription. In budding yeast, strict spatiotemporal regulation of the transcription factor Ace2 ensures that it acts only once in a cell's lifetime: at the M-to-G1 transition in newborn daughter cells. The Ndr/LATS family kinase Cbk1, functioning i...
متن کاملCloning and Expression Analysis cf Two Photosynthetic Genes, PSI-H and LHCB1, Under Trehalose Feeding Conditions in Arabidipsis Seedlings
Trehalose (a-D-glucosyl-[1,1]-a-D-glucopyranoside) is involved in mechanisms that coordinate metabolism with plant growth adaptation and development. The main objective of the current work was to find out whether trehalose feeding affects the expression of two genes involved in photosynthesis: one gene coding for photosystem1 subunit H (PS1-H) and the other for the light harvesting complex B1 (...
متن کامل