A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels.
نویسندگان
چکیده
Temperature transduction in mammals is possible because of the presence of a set of temperature-dependent transient receptor potential (TRP) channels in dorsal root ganglia neurons and skin cells. Six thermo-TRP channels, all characterized by their unusually high temperature sensitivity (Q10 > 10), have been cloned: TRPV1-4 are heat activated, whereas TRPM8 and TRPA1 are activated by cold. Because of the lack of structural information, the molecular basis for regulation by temperature remains unknown. In this study, we assessed the role of the C-terminal domain of thermo-TRPs and its involvement in thermal activation by using chimeras between the heat receptor TRPV1 and the cold receptor TRPM8, in which the entire C-terminal domain was switched. Here, we demonstrate that the C-terminal domain is modular and confers the channel phenotype regarding temperature sensitivity, channel gating kinetics, and PIP2 (phosphatidylinositol-4,5-bisphophate) modulation. Thus, thermo-TRP channels contain an interchangeable specific region, different from the voltage sensor, which allows them to sense temperature stimuli.
منابع مشابه
Lessons from peppers and peppermint: the molecular logic of thermosensation.
Sensory neurons report a wide range of temperatures, from noxious heat to noxious cold. Natural products that elicit psychophysical sensations of hot or cold, such as capsaicin or menthol, were instrumental in the discovery of thermal detectors belonging to the transient receptor potential (TRP) family of cation channels. Studies are now beginning to reveal how these channels contribute to ther...
متن کاملBiophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8
Mammals maintain homeostatic control of their body temperature. Therefore, these organisms are expected to have adaptations that confer the ability to detect and react to both self and ambient temperature. Temperature-activated ion channels have been discovered to be the primary molecular determinants of thermosensation. The most representative group of these determinants constitutes members of...
متن کاملImmunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E
Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...
متن کاملTRPM8 Is Required for Cold Sensation in Mice
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling; however, it is unclear whether either ion channel is required for thermosensation in vivo. We show that mice lacking TRPM8 have severe behavioral deficits in response to cold stimuli. In thermotaxis assays of temper...
متن کاملA thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels.
The exceptionally high temperature sensitivity of certain transient receptor potential (TRP) family ion channels is the molecular basis of hot and cold sensation in sensory neurons. The laws of thermodynamics dictate that opening of these specialized TRP channels must involve an unusually large conformational standard-state enthalpy, ΔH(o): positive ΔH(o) for heat-activated and negative ΔH(o) f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 18 شماره
صفحات -
تاریخ انتشار 2006