Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP.

نویسندگان

  • David C Zappulla
  • Karen J Goodrich
  • Julian R Arthur
  • Lisa A Gurski
  • Elizabeth M Denham
  • Anne E Stellwagen
  • Thomas R Cech
چکیده

Unlike ribonucleoprotein complexes that have a highly ordered overall architecture, such as the ribosome, yeast telomerase appears to be much more loosely constrained. Here, we investigate the importance of positioning of the Ku subunit within the 1157-nt yeast telomerase RNA (TLC1). Deletion of the 48-nt Ku-binding hairpin in TLC1 RNA (tlc1Δ48) reduces telomere length, survival of cells with gross chromosomal rearrangements, and de novo telomere addition at a broken chromosome end. To test the function of Ku at novel positions in the telomerase RNP, we reintroduced its binding site into tlc1Δ48 RNA at position 446 or 1029. We found that Ku bound to these repositioned sites in vivo and telomere length increased slightly, but statistically significantly. The ability of telomerase to promote survival of cells with gross chromosomal rearrangements by healing damaged chromosome arms was also partially restored, whereas the kinetics of DNA addition to a specific chromosome break was delayed. Having two Ku sites in TLC1 caused progressive hyperelongation of a variable subset of telomeres, consistent with Ku's role in telomerase recruitment to chromosome ends. The number of Ku-binding sites in TLC1 contributed to telomerase RNA abundance in vivo but was only partially responsible for telomere length phenotypes. Thus, telomerase RNA levels and telomere length regulation can be modulated by the number of Ku sites in telomerase RNA. Furthermore, there is substantial flexibility in the relative positioning of Ku in the telomerase RNP for native telomere length maintenance, although not as much flexibility as for the essential Est1p subunit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo.

The 1157-nt Saccharomyces cerevisiae telomerase RNA, TLC1, in addition to providing a 16-nt template region for reverse transcription, has been proposed to act as a scaffold for protein subunits. Although accessory subunits of the telomerase ribonucleoprotein (RNP) complex function even when their binding sites are relocated on the yeast telomerase RNA, the physical nature of the RNA scaffold h...

متن کامل

The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae

In Saccharomyces cerevisiae and in humans, the telomerase RNA subunit is bound by Ku, a ring-shaped protein heterodimer best known for its function in DNA repair. Ku binding to yeast telomerase RNA promotes telomere lengthening and telomerase recruitment to telomeres, but how this is achieved remains unknown. Using telomere-length analysis and chromatin immunoprecipitation, we show that Sir4 - ...

متن کامل

BLM helicase complements disrupted type II telomere lengthening in telomerase-negative sgs1 yeast.

Recombination-mediated pathways for telomere lengthening may be utilized in the absence of telomerase activity. The RecQ-like helicases, BLM and Sgs1, are implicated in recombination-mediated telomere lengthening in human cells and budding yeast, respectively. Here, we show that BLM expression rescues disrupted telomere lengthening in telomerase-negative sgs1 yeast. BLM helicase activity is req...

متن کامل

Conserved N-terminal motifs of telomerase reverse transcriptase required for ribonucleoprotein assembly in vivo.

Telomerase is a ribonucleoprotein (RNP) reverse transcriptase responsible for the maintenance of one strand of the telomere terminal repeats. The key protein subunit of the telomerase complex, known as TERT, possesses reverse transcriptase (RT)-like motifs that directly mediate nucleotide addition. The RT motifs are located in the C-terminal region of the polypeptide. Sequence alignments also r...

متن کامل

Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance.

POT1 is a single-copy gene in yeast and humans that encodes a single-strand telomere binding protein required for chromosome end protection and telomere length regulation. In contrast, Arabidopsis harbors multiple, divergent POT-like genes that bear signature N-terminal OB-fold motifs, but otherwise share limited sequence similarity. Here, we report that plants null for AtPOT1 show no telomere ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2011